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Abstract

Generative machine learning models have shown notable success in identi-
fying architectures for metamaterials — materials whose behavior is deter-
mined primarily by their internal organization — that match specific target
properties. By examining kirigami metamaterials, in which dependencies
between cuts yield complex design restrictions, we demonstrate that this
perceived success in the employment of generative models for metamaterials
might be akin to survivorship bias. We assess the performance of the four
most popular generative models — the Variational Autoencoder (VAE), the
Generative Adversarial Network (GAN), the Wasserstein GAN (WGAN),
and the Denoising Diffusion Probabilistic Model (DDPM) — in generating
kirigami structures. Prohibiting cut intersections can prevent the identifica-
tion of an appropriate similarity measure for kirigami metamaterials, signif-
icantly impacting the effectiveness of VAE and WGAN, which rely on the
Euclidean distance – a metric shown to be unsuitable for considered geome-
tries. This imposes significant limitations on employing modern generative
models for the creation of diverse metamaterials.

Keywords: Inverse design, Machine learning, Generative Models,
Mechanical Metamaterials, Kirigami

1. Introduction

Mechanical metamaterials inherit unique behavior and extreme properties
from their intricate internal organization. Conceptualized back at the end of
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the previous century [1, 2], mechanical metamaterials underwent significant
progress over the last thirty years [3, 4], in part thanks to the revolution
in additive manufacturing, enabling precise fabrication [5, 6]. If classical
metamaterials were mostly lattices assembled from the repeating unit cells
[7], modern metamaterials often feature heterogeneous designs [8], exhibit
multistability [9] and are even capable of performing simple computations
[10, 11]. Such advanced mechanical behavior relies on structure-properties
relationships more complex than ever before. Tailoring metamaterial archi-
tectures to achieve specific desired behavior is a challenging task, but it has
become more accessible thanks to the advancements in artificial intelligence
(AI) and machine learning (ML). A variety of machine learning approaches
have gained recognition for their ability to rapidly create a large variety
of different metamaterial designs once they have been trained [12]. This
includes Variational Autoencoders (VAE) [13], Generative Adversarial Net-
works (GAN) [14] and fairly recent the powerful Denoising Diffusion Models
[15] that have revolutionized image generation [16, 17].

However, upon examining the application of generative models in the in-
verse design of mechanical metamaterials [12, 18], it is apparent that they are
used differently than in image generation. In image generation, the strength
of these models is in their ability to narrow the design space from all possible
images to a subset of admissible ones, such as generating only human faces
[19]. Contrary to this, it is common to parameterize mechanical metamateri-
als such that every randomly chosen set of parameters is admissible [20, 21],
or the restrictions are trivial, such as requiring the trusses to have positive
lengths. For imposing more complex restrictions on the design space, ad-
vanced generative ML techniques are required. For example, graph-based
deep learning generative framework enabling the construction of continuous
latent space representation for an extreme variety of trusses has been re-
cently presented [22]. Nonetheless, ML methods applied to metamaterials
are primarily used to learn the relationship between structure and properties
rather than to understand structural restrictions that should be applied.

However, such all-admissible parameterization can come at the cost of
excluding more sophisticated and sometimes optimal solutions from the de-
sign space. A good example is the metamaterials employing straight cuts in
the planar sheets – often called kirigami metamaterials [23, 24] – to program
the desired mechanical behavior. For instance, alternating cuts with hori-
zontal and vertical orientations within the sheet (Figure 1a) can lead to the
manifestation of auxetic behavior via the rotating squares mechanism [25].
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Further, it was shown [26] that adding random rotations to the base alter-
nating structure could be a method to program the behavior of the resulting
metamaterial. The greater the maximum deviation from the base structure,
the greater the achievable range of material properties. It is important to
note that rotations for each cut were limited to prevent intersections that
can cause undesired effects such as stress concentration or even lead to dis-
connected regions. While limiting the deviations from the initial structure
helps in preventing intersections, it simultaneously disqualifies the majority
of intersection-free configurations, such as the one shown in Figure 1c.

While kirigami metamaterials have been the focus of multiple studies
employing machine learning techniques, such studies were either limited to
property predictions [27], or employed strict restrictions to get all-admissible
parameterizations [28, 29]. This prompts the question of why ML is not more
extensively used to learn design restrictions in metamaterials in a manner
akin to its application in image generation. In this manuscript, we exam-
ine the fundamental differences between image and metamaterial generation.
Additionally, we discuss why certain ML algorithms can learn these design
restrictions while others cannot. Through this analysis, we aim to highlight
the presence of survivorship bias in the existing literature on generative AI in
metamaterial design, which arises from considering only metamaterials with
favorable design spaces. Furthermore, we demonstrate that the challenge of
generating the aforementioned kirigami metamaterials serves as an effective
benchmark for assessing the ability of generative algorithms to learn general
design space restrictions.

2. Problem statement

Most generative design algorithms adhere to a similar core concept. A
dataset filled with examples of what to generate, e.g. admissible metama-
terials, is presented to the corresponding algorithm that learns from this
information to generate similar data. The difficulty lies in determining what
qualifies as ”similar data”. There are two approaches to this, which can
also be combined together. The first approach views the dataset as samples
from a probability distribution, where certain combinations of parameters
are more or less likely than others. In this case, similarity is assessed by
comparing the distribution of the generated data with that of the example
data. The second approach performs a direct comparison between samples.
For this, a specific sample-to-sample similarity metric must be chosen. The
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Figure 1: Mechanical metamaterials based on straight cuts. a Initial 6 × 6 pattern with
alternating cuts. This architecture gives rise to auxetic behavior through the rotating
squares mechanism. b Perturbation of the initial architecture is performed by adding
rotations βi,j to each cut. The absolute value of rotations is capped by parameter βmax.
c Resulting admissible design without intersections between cuts. The likelihood of ob-
taining intersection-free sample through random rotations (βmax = 90◦) does not exceed
0.001%

most commonly used one is the Euclidean distance (ED). In a n-dimensional
space Rn, the ED between two samples x and x̂ is calculated as follows:

DE(x, x̂) =

√√√√ n∑
i=1

(xi − x̂i)2 (1)

While other similarity measures might be more effective for image genera-
tion [30], ED has still been shown to yield good results, and it is a part of the
original formulations for several generative algorithms [13, 31]. For mechan-
ical metamaterials, on the other hand, ED may not be the most appropriate
choice for measuring similarity. For illustration, consider Figure 2a, which
displays three different configurations for two neighboring cuts with angles
to the vertical direction as follows: A) [5◦,4◦], B) [−5◦,−3◦] C) [65◦,−45◦].
We can pose the question: which two configurations are most similar? At
first glance, the answer (A, B) appears straightforward, which aligns with
ED since DE(A,B) < DE(A,C) < DE(B,C), where

DE(A,B) =
√
(5 + 5)2 + (4 + 3)2 ≈ 12.206

DE(A,C) =
√

(5− 65)2 + (4 + 45)2 ≈ 77.466

DE(B,C) =
√

(−5− 65)2 + (−3 + 45)2 ≈ 81.633

(2)
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Figure 2: Suitability of the Euclidean Distance for two cuts. a Three different configura-
tions (A: [5◦,4◦], B: [−5◦,−3◦] C: [65◦,−45◦]) of adjacent cuts with unit length between
centers and length of

√
3. b The design space for the considered system with two cuts.

Dark blue zones correspond to the angle pairs of intersecting cuts. Magenta and green
lines show two possible routes between A and B. c Sequence of cut positions correspond-
ing to direct transition from A and B (magenta path). d Sequence of cut positions for
detour path shown by green line. Note passing configuration C on a route from A to B.

However, this conclusion overlooks a crucial point. Dark regions in Fig-
ure 2b represent pairs of angles where two neighboring cuts intersect, forming
a non-admissible zone. The transition from configuration A to configuration
B through linear interpolation (as illustrated in Figure 2c) follows the short-
est path in Euclidean space, indicated by the magenta line. This path, how-
ever, clearly passes through the non-admissible zone. Consequently, not all
intermediate configurations betweenA andB belong to the admissible design
space, despite both end configurations being intersection-free. To navigate
fromA toB staying within the admissible design space, a considerably longer
trajectory is required, as shown by the green line in Figure 2b. Notably, the
admissible path from A to B includes passing through configuration C (Fig-
ure 2d). Therefore, if no intersections are allowed, the title of most similar
pair belongs to (A, C). This implies that ED might not be an appropriate
measure of similarity for these simplified two-cut kirigami designs. Moreover,
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Figure 3: Generative approaches. a Variational Autoencoder (VAE), comprised of En-
coder and Decoder stages, learns to map the designs into latent space and retrieve them
back. b Generative Adversarial Network (GAN) utilizes competition between Generator
and Discriminator to create samples that look real. c Denoising Diffusion Probabilistic
Model (DDPM) employs sequential addition of noise to map the designs to latent space.

it suggests that generative algorithms relying on ED may not effectively learn
to avoid intersections, which will be shown further. This paper analyzes the
ability of the four most-common generative design algorithms – VAE [13],
GAN [14], Wasserstein GANs (WGAN) [31] and Denoising Diffusion Proba-
bilistic Models [17] – to handle such geometrical challenges.

2.1. Variational Autoencoders

The Variational Autoencoder (VAE), shown in Figure 3a and introduced
in 2013 by Kingma and Welling [13], is a modification of the traditional au-
toencoder [32] for generative design. Autoencoders transform input data into
a usually lower-dimensional representation in so-called latent space and are
comprised of two parts. The encoder creates a representation of the original
data in the latent space while the decoder tries to reconstruct the original
data from such a representation. Both parts are trained jointly by minimiz-
ing the error between the original and reconstructed data, which is usually
referred to as reconstruction loss. While these traditional autoencoders can
be used for a variety of tasks, including image denoising [33], dimensionality
reduction [34], and anomaly detection [35] they lack the ability to generate
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new data. Unlike traditional autoencoders, VAEs map to mean and variance
of a normal distribution in the latent space. An additional regularization
term in the loss function compels this distribution to have zero mean and
unit variance. This enables the generation of new data by sampling a rep-
resentation from this normal distribution and then decoding it. While the
Kullbeck-Leiber divergence [36] has been consistently used as regularization
loss, the choice of reconstruction loss, in general, depends on the input data.
In the original formulation, Binary Crossentropy loss was used for the MNIST
dataset, where pixels are supposed to be either white or black, while the Mean
Squared Error (the square of the ED) was used for continuous problems [13].
Together they yield the following combined loss function:

LV AE = DKL

(
N (µx, σx),N (0, 1)

)︸ ︷︷ ︸
regularization loss

+ κDE(x, x̂)
2︸ ︷︷ ︸

reconstruction loss

(3)

, where x is the original input, x̂ the reconstructed one and µx, σx are the
mean and variance of the learned distribution in the latent space, while κ is a
parameter controlling the trade-off between the two losses. Note the reliance
of reconstruction loss on the Euclidean distance. We note that there have
been efforts to make VAEs independent of the ED, such as by combining it
with a GAN, that have shown promising results [37].

2.2. Generative Adversarial Networks

In 2014, Goodfellow et al. [14] introduced a framework for training gen-
erative models via an adversarial process, giving rise to Generative Adver-
sarial Networks (GANs). This architecture (Figure 3b) encompasses both
a generative model G, and a discriminative model D, which are trained si-
multaneously. This training takes the form of a two-player game. While
D is trained to distinguish between data generated by G and the training
data, G is simply trained to maximize the probability of D making a mis-
take. This process reaches an equilibrium when the generative model has
learned a mapping between a chosen distribution in the latent space and the
data distribution, similar to the discriminator of a VAE. It has further been
shown that it is equivalent to minimizing the Jensen-Shannon divergence be-
tween the distribution of the data generated by G and the distribution of the
training data:

LGAN = DJS

(
p(x), p(x̂)

)
= DKL

(
p(x), p(x̂)

)
+DKL

(
p(x̂), p(x)

)
(4)
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This means that the vanilla GAN relies only on distances between prob-
ability distributions and not on the distance between samples, which should
allow it to learn intersection avoidance.

2.3. Wasserstein Generative Adversarial Networks

The Wasserstein Generative Adversarial Network (WGAN) [31] is a GAN
variant where the Jensen-Shannon divergence has been replaced by theWasser-
stein distance (also called Kantorovich–Rubinstein metric or Earth mover
distance) to measure the discrepancy between the distributions of the gen-
erated and the training data. This metric, which was first introduced by
Kantorovich [38], is based on the principle of optimal transport. A probabil-
ity distribution is seen as a distribution of mass in the design space, and the
difference between distributions is measured as the minimal cost of trans-
porting mass so that one distribution resembles the other. While it has the
benefit of always staying finite and can, therefore, always provide meaningful
gradients to update the generator, the Wasserstein distance (Wass1) relies on
an underlying metric to measure how far the mass has been transported. For
the WGAN, this is usually the Euclidean metric DE:

Wass1(p(G(z)), p(x)) = inf
π∈Π(G(z)),p(x))

E(X1,X2)∼πDE(X1, X2) (5)

Note that replacing the Jensen-Shannon by the Wasserstein distance
makes training generally more stable, but WGAN formulation comes with
the drawback of not always converging to the equilibrium point [39].

2.4. Denoising Diffusion Probabilistic Models

In 2015, Sohl-Dickstein et al. [16] laid the foundation for a class of la-
tent variable models, which have since become widely known as Denoising
Diffusion models (Figure 3c). The ingenious concept behind these models is
that, rather than attempting to learn an arbitrary direct mapping from the
latent space to the design space, they learn to reverse a diffusion process that
stepwise transforms an image into its representation in the latent space. This
diffusion process is defined as a Markov Chain - a stochastic model where
the probability of transitioning to another state depends only on the current
state - that gradually introduces noise to the image over a number of steps
T . So for data of the from x0 ∼ q(x0) the forward process q(x1:T |x0) is given
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as:

q(x1:T |x0) =
T∏
t=1

q(xt|xt−1) (6)

where the variance of the Gaussian noise that is added in each step is altered
for each step based on a variance schedule β1, . . . , βT :

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (7)

This formulation possesses the advantage that when the variances of the
forward process βt are small, the reverse process pθ(x0:T ) can also be described
as a Markov chain with Gaussian transitions. Only that in this instance, both
the mean and variance of the transitions are learned [16]:

pθ(x1:T ) =
T∏
t=1

pθ(xt−1|xt) (8)

where

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)), p(xT ) = N (xT ;0, I) (9)

Training of the reverse process is usually performed by minimizing the
variational upper bound on the negative log-likelihood using stochastic gra-
dient descent. In 2020 Ho et al. [17] introduced a variant of these models
called Denoising Diffusion Probabilistic Model (DDPM). When conditioned
on x0, this bound can be rewritten using KL divergences between Gaussians:

L(θ) = Eq

[
DKL(q(xT |x0)∥p(xT )) +

∑
t>1

DKL(q(xt−1|xt,x0)∥pθ(xt−1|xt))

− log pθ(x0|x1)
]

(10)

Furthermore, as these KL-divergences are computed between two Gaus-
sian distributions, reparametrization enables the formulation of the varia-
tional bound as the MSE between the actual noise ϵ ∼ N (0, I) and its pre-
dicted counterpart ϵθ(xt, t):

L(θ) := Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
(11)
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Here, once again, ED is encountered, though this time it is computed be-
tween instances of noise rather than instances from the design space. As this
distance is derived from the initial choice of Gaussian noise in the forward
process, it means that this choice limits the ability of denoising diffusion
models to deal with non-Euclidean data. Therefore, research to extend diffu-
sion models has recently focused on more general choices of forward processes
and their reversal [40–42].

3. Kirigami dataset

To demonstrate the practical limitations of the generative algorithms dis-
cussed in the previous sections, we assessed their ability to generate kirigami
metamaterials akin to those introduced by Grima et al. [26]. We started with
the alternating 6×6 pattern (Figure 1a) and introduced random rotations for
each cut, maintaining the periodicity of structure in both directions. These
added rotations are denoted as βi,j for a given cut ci,j, where i, j = 0, .., 5
(Figure 1b). Correspondingly, the angle of each cut relative to the vertical
direction is denoted as αi,j. The dimensions were chosen to ensure that in-
tersections begin to occur only if the maximum absolute value for the added
rotations βmax exceeds 30◦. The centers of adjacent cuts are one unit apart,
while the length of each cut is l =

√
3. Through variation of βmax, it is

possible to control the average number of intersections in the generated data
and the likelihood of randomly generating unit cells without intersections,
as illustrated in Figure 4a. It becomes virtually impossible to obtain an
admissible configuration by randomly selecting 36 rotation values even if a
maximum disturbance is limited to βmax = 60◦, with only three out of a
million samples containing no intersections.

Figure 4a illustrates that if βmax is set to less than 30◦, intersections
are not possible. In this case, ED serves as a suitable metric, and any lin-
ear combination of two samples remains within the admissible design space.
However, once βmax exceeds this threshold, the likelihood of randomly gen-
erating intersection-free samples rapidly becomes practically negligible. In
general, this means that admissible designs become sparsely scattered in the
design space, making it challenging for ED to measure similarity, as there is
no guarantee that a linear combination of two samples is admissible anymore.
Therefore the extent to which ED can effectively describe the similarity be-
tween unit cells for generative models can be indirectly controlled through
βmax. Here, we created datasets for three distinct values of βmax: 20

◦, 60◦ and
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Figure 4: Limiting the perturbations enables control over the success rate of generation.
a The average number of intersections in the samples and the likelihood of generating
unit cells without intersections vs maximum deviation βmax from the base structure. b
Exemplary unit cells for a maximum added rotations βmax of 20◦, 60◦ and 90◦.

90◦, to see the corresponding effect on different machine learning algorithms.
Each dataset comprised 20, 000 unit cells, represented as 6× 6 matrices con-
taining the values of αi,j. Given the near impossibility of randomly generating
intersection-free unit cells for βmax = 60◦ and βmax = 90◦, we employed a ran-
domization process. Starting from the base alternating structure, each cut
was sequentially replaced with another cut, chosen randomly from those that
would not create intersections. This sequence of random replacements was
repeated until each cut had been replaced 200 times. Examples of admissible
designs for βmax of 20◦, 60◦ and 90◦ are shown in Figure 4b.

4. Results

In order to demonstrate the varying degree of reliance of four different
machine learning algorithms (VAE, GAN, WGAN and DDPM) on ED, gen-
erators for each respective approach were trained on three datasets (βmax =
20◦, 60◦ and 90◦) separately. Theory suggests that VAE and WGAN will
learn to avoid intersections only when ED is applicable for the dataset, i.e.,
when rotations are limited. Proving that an approach is not learning can
be conceptually more challenging than showing that one is. The inability
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to learn might stem from insufficient model complexity or poor parameter
selection. To rule out these factors, VAE, GAN and WGAN models had
almost identical architectures with consistent hyperparameters across all ex-
periments. This approach ensures that observed differences in performance
can be attributed solely to the training process. Thus, if one of the methods
successfully learns to avoid intersections, the model complexity and param-
eter choices are not to blame.

4.1. Implementation

For implementing the four machine learning approaches - VAE, GAN,
WGAN, and DDPM - the PyTorch deep learning framework [43] was chosen.
PyTorch provides the capability to capture the periodicity of the samples by
using Convolutional Neural Networks (CNN) with circular padding. CNN
architecture is particularly well-suited for the unit cells of the kirigami meta-
material under investigation, as intersections can be effectively represented
through hierarchical feature mapping. Intersections primarily depend on the
direct neighbors of a cut, which corresponds to a 3x3 convolution, with these
neighboring arrangements influencing each other. Both GAN architectures,
as well as the decoder of the VAE, were based on the DCGAN framework
[44]. Batch Normalization [45] was employed in VAE’s encoder and sparingly
in the generators/decoder to minimize batch internal dependencies [46]. The
discriminator architecture was nearly identical for both GAN and WGAN,
with the addition of a sigmoid activation function for the GAN due to differ-
ent value range requirements imposed by the objective functions. Given the
potential instability of GAN training, different learning rates were utilized for
the generator and discriminator (1e5, 5e4) to improve convergence towards a
local Nash equilibrium [47]. Due to the restrictions on the dimensions of the
latent space, a different architecture was required for DDPM [17]. A convo-
lutional U-Net architecture [48] was chosen there, with filter numbers similar
to the other generative network. For all models, Adam [49] was used as an
optimizer, and a batch size was set to 32. Note that no implicit penalties
for intersections were given, enabling models to learn the restrictions just by
examining the training dataset.

4.2. Euclidean Case

As previously discussed, when the maximum absolute value for the added
rotations βmax is set to 20◦, the angles of these rotations can be chosen in-
dependently, allowing ED to effectively measure similarity between samples.

12



Figure 5: Training of models for βmax = 20◦. a The evolution of the average number of
intersections during training for unit cells generated by different machine learning ap-
proaches. An averaging over five epochs was used for curve smoothing. b Distribution of
the cuts with the specific added angles βi,j in the training dataset for βmax = 20◦ (red)
and in the set generated by trained DDPM (blue).

This scenario is akin to the classic mechanical metamaterials with benign
parameterization. In this case, to generate intersection-free unit cells, the
model simply needs to understand that the angle of each cut must be con-
fined within a specific range. Figure 5a demonstrates that after a few epochs,
three out of four approaches learn to generate unit cells with none or very few
intersections on average. The WGAN is capable of reducing the number of
intersections to less than 0.1 on average, although it exhibits poorer stability
during training. In general, if βi,j values are drawn from a uniform random
distribution with βmax = 20◦, only admissible configurations are created.
The histograms in Figure 5b reveal that after 3000 epochs, the DDPM suc-
cessfully learns to emulate this uniform distribution of rotation angles βi,j,
maintaining the generated angles within the range of −25◦ to 25◦. Minor
deviations between the training dataset and the DDPM-generated datasets
at the boundary angles of −20◦ and 20◦ can be attributed to the challenges
of learning sharp transitions within continuous models.

Another method to evaluate the effectiveness of a model in learning the
intricate constraints of the design space involves examining the overall dis-
tribution of rotation angles between neighboring cuts. If the samples gener-
ated by the trained model exhibit distributions that closely match those of
the training dataset, the model can be deemed suitable for generation. Fig-
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Figure 6: Relation between adjacent cuts for βmax = 20◦. 2D histograms show the like-
lihood of angle combinations for a cut and its bottom neighbor for a maximum absolute
value for β = 20◦. Only angles at positions that correspond to vertical cuts in the base
structure were chosen as the first elements in pairs..

ure 6 shows 2D histograms for the training dataset and datasets generated by
trained models. The color intensity represents the number of instances where
a random cut and its bottom-side neighbor possess a specific combination of
angles (βi,j, βi+1,j). For illustrative purposes, the first elements of these angle
pairs are always from cuts at positions corresponding to vertical cuts in the
initial undisturbed sample (Figure 1a). Since no intersections are possible
by construction due to βmax = 20◦, all combinations of neighboring angles
are equally likely to be observed in the training dataset, as indicated by the
homogeneous square in Figure 6. A comparison of the datasets generated
by trained models with the initial training dataset reveals that all evaluated
models (VAE, GAN, WGAN, DDPM) effectively capture the limits of the
perturbations from the initial alternating pattern. However, it is noticeable
that the VAE model slightly narrows the range of generated angles, avoiding
borderline cases. Simultaneously, the histogram for WGAN clearly shows a
more Gaussian distribution rather than a uniform one, indicating the chal-
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Figure 7: Training of models for βmax = 90◦ (a) and βmax = 60◦ (b). The evolution of
the average number of intersections during training for unit cells generated by different
machine learning approaches. An averaging over 20 epochs was used for curve smoothing.
The dashed line corresponds to the average number of intersections assuming random
sampling from the training dataset.

lenge in capturing the angle relationships from the training dataset. The
other models (GAN and DDPM) maintain a nearly uniform 2D distribution
akin to the training dataset.

4.3. Fully Random Case

When the maximal absolute value for added rotations, βmax, is set to 90◦,
the design space encompasses all possible samples with non-intersecting cuts.
The final rotations of the cuts αi,j are no longer affected by their position
in the unit cell and depend only on the rotations of the neighboring cuts in-
stead. This dependency influences the frequency at which certain rotations
occur in the dataset, as some rotations are less likely to result in intersections
with random neighbors. As a result, randomly generated unit cells, created
by sampling cuts based on the angle distribution of the training dataset,
typically have fewer intersections (represented by the black dashed line in
Figure 7a) compared to those generated from a uniform distribution (indi-
cated by the orange dotted line). Therefore, a reduction in the number of
intersections during the training of a machine learning algorithm may occur
for two different reasons: the algorithm might learn to fit the angle distri-
bution, or it might also learn the dependency of cuts on each other. In this
context, the approach of randomly drawing the rotation angles of the cuts
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Figure 8: Relation between adjacent cuts for βmax = 90◦. 2D histograms show the likeli-
hood of angle combinations for a cut and its bottom neighbor for fully random rotations
of the cuts. Only angles at positions that correspond to vertical cuts in the base structure
were chosen as the first elements in pairs.

from the angle distribution of the training data serves as a valuable base-
line. A decrease in the number of intersections on average during training
unequivocally indicates that the model is learning the dependencies between
neighboring cuts. Figure 7a demonstrates that VAE does not succeed in re-
ducing the average number of intersections below the established baseline.
Meanwhile, WGAN manages to slightly lower the number of intersections
without going beyond the baseline but fails to converge, which is a common
drawback of WGAN [39]. In contrast, both GAN and DDPM achieve signif-
icantly lower intersection counts, although they still fall short of generating
completely intersection-free samples.

A more illustrative measure of whether different generative approaches
successfully learn the dependencies between neighboring cuts, as previously
mentioned, can be captured using 2D histograms (Figure 8). Unlike the
dataset with βmax = 20◦, the distribution of angles in neighboring cut pairs
for the training dataset with βmax = 90◦ is no longer uniform. Recall that
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the dark regions in the histogram for the training dataset correspond to an-
gle pairs where cuts intersect (compare with Figure 2b). Therefore, avoiding
these zones is an important indicator of a successful generative model. By
comparing the training dataset with datasets generated by different trained
models, we can categorize these models into two groups. Models belong-
ing to the first category (VAE and WGAN) can limit the range of rotation
angles but fail to capture the dependency of a cut on its bottom neighbor.
Notably, the datasets generated by trained VAE and WGAN models contain
angle pairs even from non-admissible zones, likely due to relying on linear
interpolation between samples. On the other hand, models from the sec-
ond category (GAN and DDPM) demonstrate a much better understanding
of the design space by learning additional constraints between neighboring
cuts, with DDPM slightly outperforming GAN.

4.4. Intermediate Case

When the maximum absolute value for the added rotations, βmax, is set
to 60◦, it constitutes an intermediate situation between the Euclidean and
the fully random cases, with intersections still occurring in the design space.
Figure 4a illustrates that it remains almost impossible to generate designs
without intersections by chance, even under stricter restrictions compared to
the fully random case. Figure 7b displays the training progress for differ-
ent generative models on the dataset with βmax = 60◦. Similar to the fully
random scenario, all models exhibit gradual improvement during training, as
evidenced by a decrease in the average number of intersections in the gen-
erated samples. However, in contrast to the βmax = 90◦ case, all models
are shown to be capable of going significantly below the baseline defined by
random sampling from the training dataset distribution. Since the learning
of the angle restriction (|βi,j| < 60◦) plays an important role, both VAE and
WGAN show their capacity for performing that task, similar to the Euclidean
case. Nevertheless, as in the fully random case, DDPM and GAN surpass
the other two models, more accurately recreating the admissible design space
after training. While DDPM does not achieve a 100% success rate in gen-
erating intersection-free configurations, an average of 1.5 intersections per
sample is observed. This allows approximately one in every four generated
samples to fall within the admissible design space. This represents a more
than 50-fold improvement compared to sampling from the training set and
a 100,000-fold improvement over uniform distribution sampling. These re-
sults underscore the potential of DDPM for generating metamaterials with
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complex geometrical restrictions.
While DDPM demonstrates the best performance in this scenario, it is

noteworthy that previously weaker models, such as VAE and WGAN, also
show significant improvements. Given that their network architectures are
identical to those used in the fully random case, it logically follows that
changes in the design space are the primary contributors to their improved
performance. To avoid the need to work in a 36D space, the corresponding
changes in the characteristics of the design space can be illustrated using
the example of two neighboring cuts with perturbations added to the ini-
tial angles of 0◦ and 90◦ (Figure 1b). In the case of fully random rotations
(β = 90◦), the fraction of angle pairs corresponding to intersecting configu-
rations, calculated as the normalized area of non-admissible zones (shown in
Figure 2b), is approximately 16.5%. This implies that one in six randomly
chosen cut pairs is non-admissible. Surprisingly, the probability of intersec-
tion under a βmax = 60◦ constraint increases to 18.7%. This trend also holds
true for 6× 6 samples, where the average number of intersections is slightly
higher for βmax = 60◦ as compared to βmax = 90◦ (Figure 4a). Therefore,
the size of the non-admissible zone alone does not account for the improved
performance of generative models in the intermediate case.

At the same time, an alternative metric, closely linked to ED, can be
considered. As shown prior, the suitability of ED as a similarity measure is
compromised when there is no direct path between samples, as demonstrated
in Figure 2. Therefore, the shapes and positions of non-admissible zones, in
addition to their overall area, could significantly influence the appropriateness
of ED as a similarity measure in the examined cases. In the previous example
involving two adjacent cuts, there is a 23.7% probability that a straight path
connecting two random points within the admissible design space of the fully
random case (βmax = 90◦) passes through a non-admissible zone. However,
when βmax is set to 60◦, this probability drops significantly to only 3.5%,
making ED a much more suitable similarity measure. While generalizing
these findings from this 2D example to a 36D case is not straightforward, the
observed relationships between neighboring cuts suggest that the improved
performance of certain models, particularly VAE and WGAN, in the interme-
diate case is likely due to a design space that aligns better with ED metric.
Consequently, the ability to influence the ”goodness” of the design space
through the selection of βmax could hold significant promise for future gener-
ative models tailored to deal with the complex design spaces of mechanical
metamaterials.
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5. Conclusion

Machine learning is deeply embedded into the research on mechanical
metamaterials, as evidenced by the growing number of successful generative
approaches applied to inverse design problems. However, this perceived suc-
cess may be somewhat misleading, akin to survivorship bias, where only de-
signs with ”nice” parameterizations are considered. In image generation, ma-
chine learning often derives design constraints from training data, whereas,
for many mechanical metamaterials, parameterizations are preselected to in-
clude these constraints. Our study extends beyond these benevolent param-
eterizations to examine more complex kirigami structures. One identified
issue with the application of generative models to such metamaterials lies in
the inapplicability of the classical Euclidean distance (ED) as a metric for
assessing the similarity between unit cells.

Thus, in this study, we explore the extent to which four of the most com-
mon generative design algorithms – VAE, GAN, WGAN, and DDPM – rely
on ED. Using established theoretical findings and the example of kirigami
structures, we demonstrate that out of these four algorithms, both VAE
and WGAN depend on this similarity measure for effective generation. This
dependence limits their ability to learn complex design space constraints,
although they are more suitable for generating metamaterials with simpler
all-admissible parameterizations due to their stability and lower computa-
tional costs during training as compared to GAN and DDPM. In contrast,
GAN and DDPM demonstrate potential in learning design space limitations
but still fall short of fully capturing these constraints. This suggests that re-
liance on ED is just one factor contributing to the lack of generative models
for kirigami metamaterials, highlighting a need for further investigation.

One possibility is related to the difficulty of defining sharp decision bound-
aries from a training dataset due to the extremely low likelihood of encoun-
tering edge cases where two cuts barely avoid intersection. Active Learning,
which is concerned with choosing samples in a dataset so that the infor-
mation gain is maximized, might offer the solution. This field has recently
seen rapid progress, particularly with the development of Generative flow
networks [50], however these methods still need to be adapted for complex
and high-dimensional spaces. Another possible factor in the struggle of gen-
erative models (GAN and DDPM) with kirigami metamaterials is associated
with their mapping of the data to a low-dimensional Euclidean manifold. If
such mapping does not exist, and the data lies on a more complex mani-
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fold, GAN and DDPM will perform suboptimally. Research into extending
diffusion models to address such cases is quite young but promising [40–42].

Our research highlights the inherent limitations of classical generative
approaches when employed in the domain of mechanical metamaterials, as
opposed to their typical application in image generation. We underscore the
reliance of these methods on the Euclidean distance metric, which is un-
suitable for many metamaterials with intricate design spaces. The kirigami
metamaterials presented here serve as an ideal benchmark for the develop-
ment of new generative models, given that the complexity of their design
space can be modulated by adjusting the perturbations of the initial system.
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Bautista, “Diffusion probabilistic fields,” in The Eleventh International
Conference on Learning Representations, 2023.

[43] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, (New York, NY, USA), pp. 8024–8035, Curran
Associates, Inc., 2019.

[44] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” in
4th International Conference on Learning Representations, ICLR 2016
(Y. Bengio and Y. LeCun, eds.), (San Juan, Puerto Rico), 2016.

[45] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in Proceedings of the
32nd International Conference on Machine Learning, ICML 2015 (F. R.
Bach and D. M. Blei, eds.), vol. 37 of JMLR Workshop and Conference
Proceedings, (Lille, France), pp. 448–456, JMLR.org, 2015.

25



[46] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
X. Chen, and X. Chen, “Improved techniques for training gans,” in Ad-
vances in Neural Information Processing Systems (D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, eds.), vol. 29, (New York, NY,
USA), Curran Associates, Inc., 2016.

[47] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash
equilibrium,” in Advances in Neural Information Processing Systems
(I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, eds.), vol. 30, (New York, NY, USA), Curran
Associates, Inc., 2017.

[48] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in Medical Image Computing
and Computer-Assisted Intervention–MICCAI 2015: 18th International
Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pp. 234–241, Springer, 2015.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings (Y. Bengio and Y. LeCun, eds.), 2015.

[50] E. Bengio, M. Jain, M. Korablyov, D. Precup, and Y. Bengio, “Flow net-
work based generative models for non-iterative diverse candidate gener-
ation,” in Advances in Neural Information Processing Systems (M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, eds.),
vol. 34, (New York, NY, USA), pp. 27381–27394, Curran Associates,
Inc., 2021.

26


	Introduction
	Problem statement
	Variational Autoencoders
	Generative Adversarial Networks
	Wasserstein Generative Adversarial Networks
	Denoising Diffusion Probabilistic Models

	Kirigami dataset
	Results
	Implementation
	Euclidean Case
	Fully Random Case
	Intermediate Case

	Conclusion

