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clinical trials. One reason that cross-valida-
tion can inadvertently result in overfitting 
the held-out data is that the modeler, through 
iterative model adjustments, may eventually 
use all the available data. The issue is likely 
more widespread than typically acknowl-
edged. For example, a comprehensive review 
of 116 studies across various psychiatric diag-
noses found signs of overfitting specifically 
in studies with small sample sizes (<50 par-
ticipants) (2). Small sample sizes also cause 
large variance in cross-validation results, and 
although these issues are well known in sta-
tistics and machine learning, many studies 
still do not follow best practices to improve 
the outcomes of cross-validation (3). 

A reliable way to assure the generalizability 
of machine learning models lies in validating 
their predictive accuracy on a truly indepen-
dent, untouched validation sample, known 
as out-of-sample validation. Often, this ap-
proach is not used in clinical studies owing 
to the challenges associated with acquiring 
larger datasets and the need for stringent 
rules governing data acquisition and usage. 
However, the study by Chekroud et al. adds to 
a growing body of evidence that underscores 
the necessity of these more robust validation 
standards to avoid overly optimistic results 
from machine learning models that fail to 
generalize to wider clinical contexts.

Even with models that are properly vali-
dated and supported by large sample sizes, 
attempts to predict the clinical outcome or 
treatment response for individual patients 
can be unreliable. In the study by Chekroud 
et al., even when data from multiple clini-
cal trials were pooled to train the model, its 
predictions still failed to generalize to a new 
independent trial. The reasons for this are 
complex and multifaceted. A primary factor 
is the inherent heterogeneity in data from 
clinical populations. This issue is particularly 
prominent in psychiatric disorders, which 
are typically defined by sets of symptoms 
(syndromes). Patients with the same diagnos-
tic label may exhibit vastly different symptom 
profiles that warrant different treatments. 
Moreover, identical symptoms in different 
individuals might have distinct biological 
underpinnings and thus require different 
therapeutic strategies (4). Basing machine 
learning models purely on diagnostic labels 
without taking this type of heterogeneity into 
account can lead to inaccuracies when pre-
dicting effective treatment strategies. 

A promising approach to address this chal-
lenge is to stratify patients into more pre-
cisely defined categories, for example, based 
on underlying symptom causes. This can be 
achieved, in part, through the use of theory-

driven computational models that aim to 
describe underlying disease mechanisms, a 
method gaining traction in the field of com-
putational psychiatry. These models are in-
creasingly being used alongside data-driven 
machine learning techniques, forming pow-
erful tools to tackle the issue of heterogeneity 
in patient populations (5, 6).

Another form of heterogeneity may stem 
from systematic differences across studies, 
locations, or time points. As a result, predic-
tions of machine learning models trained on 
data from a specific context—a population, 
country, setting, or time period—might rely 
on features that are associated but not caus-
ally related with a clinical outcome in a given 
study but are not predictive in other contexts. 
One way to address this heterogeneity is to 
pool data across multiple studies and sites.

Unreliable predictions may also be the 
result of outdated outcome measures. Many 
existing symptom scores are based on ques-
tionnaires that may no longer align with 
understanding of the disease and potentially 
lead to inaccurate assessments of treatment 
response. For example, the positive and nega-
tive syndrome scale (PANSS) used in the 
clinical trials from Chekroud et al. is gradu-
ally being supplanted by more contemporary 
assessment tools, specifically in the context 
of negative symptoms in schizophrenia (7). 
If a questionnaire fails to fully capture the 
true disease burden, it might not accurately 
detect genuine improvements resulting from 
treatment. This discrepancy can lead to mis-
classification of who has or has not benefited 
from the treatment, which hinders the accu-
rate training of the machine learning model. 
Similar to the heterogeneity within diagnos-
tic categories, outcome measures will become 
more accurate with increasing insight into 
the underlying disease mechanism.

The challenges of using machine learning 
to predict individual treatment response in 
medicine, specifically in the context of psy-
chiatry, stem from a complex interplay of is-
sues related to model validation standards, 
diagnostic heterogeneity, and the relevance 
of outcome measures used. Addressing these 
challenges is essential for impactful clinical 
research and to enable progression toward 
effective precision medicine. j
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F
riction controls daily life, often with-
out being noticed. It allows walking 
without slipping, holds sandcastles 
together, and determines the per-
ceived cleanliness of hair. Little resis-
tance is desired when pedaling bikes, 

yet the expectation of pulling the brakes is 
to stop moving. Overall, machines use 20% 
of the world’s energy production to over-
come frictional resistance (1). Present-day 
strategies to tune friction, derived from 
more than a century of engineering in-
sights, often involve the lubrication of in-
terfaces with oils or greases. On page 200 
of this issue, Aymard et al. (2) report an 
alternative strategy of rationally design-
ing the frictional properties of interfaces. 
Their approach to friction control may 
lead to the development of surfaces that 
adapt to the environment in real time. 

Aymard et al. show that small bumps of 
identical radii (3) constitute simple build-
ing blocks that can be combined into a 
frictional metainterface. By using many 
such bumps on a surface and adjust-
ing their height distribution, the authors 
could prescribe a desired, even nonlinear, 
dependence of the frictional force that re-
sists sliding motion on the external load 
that pushes the sliding interfaces together.

The effect of surface topography on 
friction has long been known. Charles-
Augustin Coulomb, one of the founders of 
tribology (the science of friction), wrote in 
1779 about the interlocking of asperities 
(4), the name given to “bumps” on rough 
surfaces. Surface topography determines 
the amount of actual contact that two 
bodies make. Thus, two bodies typically 
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touch only on the highest peaks of their 
topographies. The contact area of random 
interfaces increases proportional to the ap-
plied load because the surfaces deform to 
conform (5). Friction force is typically pro-
portional to contact area, which is why the 
friction coefficient—the ratio of friction 
force to normal force—is constant.

Random roughness is present on all 
natural and man-made interfaces (6), but 
understanding the influence of roughness 
on friction is complicated 
because roughness is scale 
free; there is no single 
length scale that stands 
out. To exert control, en-
gineers have long explic-
itly introduced geometric 
structures with well-de-
fined length scales into 
interfaces. For example, 
honing produces trenches, 
and laser patterning pro-
duces dimples. Although 
the effect of these struc-
tures on lubricated interfaces can be mea-
sured, their functional role is debated, 
impeding the design of surfaces with de-
sired properties.

The bumpy metainterfaces of Aymard 
et al. also explicitly introduce a length 
scale, but in a very controlled manner and 
for unlubricated contacts. The effects of 
roughness, mechanics, and chemistry on 
the frictional properties of the individual 
bump were experimentally characterized 
(3) and fed into a machine-learned model 
that was used to design the aggregate re-
sponse of the metainterface, which consists 
of many bumps. The height distribution of 
the bumps was then optimized to yield a 
desired functional relationship of contact 

area versus normal load, tuning the fric-
tional response. By this controlled sepa-
ration of the small-scale and bump-scale 
response, Aymard et al. could “program” 
the frictional response of a metainterface.

The idea of programming material be-
havior through geometry and properties of 
discrete building blocks is ingrained in the 
field of metamaterials. The first implemen-
tation of this concept in mechanics dates 
back to the 1987 work of the engineering 

scientist Roderic Lakes, 
who proposed a material 
composed of repeating 
identical unit cells and ca-
pable of imitating unusual 
auxetic behavior that is 
observed in some foams 
(7). The geometry of the 
unit cell defines the macro-
scopic behavior of the en-
tire metamaterial, enabling 
control over relations be-
tween structure and prop-
erties (see the figure).

Over time, mechanical metamaterials 
constructed from a single unit cell gradu-
ally morphed into structures that com-
bined unit cells with different geometries 
and properties within the single metama-
terial. Just like Aymard et al.’s metasur-
faces that have bumps instead of unit cells, 
this enabled the programming of specific 
complex mechanical responses through 
internal organization. The price for versa-
tility is a necessity for advanced modeling 
methods to search for the structure that fa-
cilitates the required behavior. Luckily, this 
transition nicely coincided with progress 
in machine learning that has become vital 
for the efficient inverse design of metama-
terials (8)—a progress that Aymard et al.

exploited for designing their metainter-
faces. Classical metamaterials can be con-
sidered frozen in time and space, unable 
to change behavior after fabrication. By 
contrast, building unit cells with geom-
etries that can be altered makes it possible 
to encode not one but multiple structure-
property relationships in the same materi-
als and switch between these relationships 
on demand (9). Such metamaterials might 
rely on buckling, stimuli-responsive mate-
rials or on electromechanical actuators for 
triggering reprogramming to adjust me-
chanical behavior (10, 11).

Embedding such active elements into 
metainterfaces would enable control of 
friction and facilitate frictional adaptivity. 
Indeed, simple forms of such reconfigu-
rable interfaces have already been real-
ized to control wettability (12). Frictional 
adaptivity would have numerous applica-
tions, such as touch displays with haptic 
feedback. Current attempts to control fric-
tion center around electrochemistry (13) 
or electroadhesion (14). A metainterface 
approach would supersede the chemical 
route because control of not just simply 
friction but the whole nonlinear depen-
dency of friction force on normal load 
appears within reach. Key engineering 
challenges will revolve around reliability 
because friction is typically accompanied 
by wear. Miniaturization of active ele-
ments will also be challenging, but either 
microsystems or stimuli-responsive mate-
rials may offer solutions to this. The road 
toward friction control holds a bumpy, but 
bright, future. j
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“…control of not just 
simply friction but 

the whole nonlinear 
dependency of 

friction force on 
normal load appears 

within reach.”

Metamaterials hint at the future of frictional metainterfaces 
Metamaterials progressed from simple repetition of identical unit cells to the assembly of various cells 
with individually reprogrammable geometries and properties (top). Frictional metainterfaces evolved from 
simple textures to surfaces with combinatorial topography (bottom).  By making each individual bump 
reprogrammable, adaptive frictional metainterfaces are within reach.
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