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The rational geometric and topological organization of mechanical metamaterials allows for unconventional 
responses to external loads. These materials exhibit a coupling between deformation in orthogonal directions 
governed by Poisson’s ratio, which, in turn, can be precisely adjusted through the deliberate selection of specific 
geometrical parameters within the metamaterial’s structure. Although certain structural motifs may even enable 
a negative Poisson’s ratio, it is conventionally assumed to remain constant or near-constant during deformation. 
In this study, we introduce a novel design concept that enables metamaterials to switch the sign of Poisson’s 
ratio during loading, specifically at predetermined compressive strain levels, by harnessing self-contact between 
individual elements of the metamaterial. Through the integration of finite element simulations and experimental 
testing, we establish a direct correlation between the geometrical parameters of the unit cell and the mechanical 
response of the metamaterial. This correlation enables us to engineer samples with desired functionality and we 
present a discrete scales demonstrator that exploits this switchable behavior.
1. Introduction

The rational internal organization of mechanical metamaterials en-
ables them to exhibit unconventional responses when subjected to me-
chanical loading. One of the most well-known manifestations of such 
unusual behavior can be observed in so-called auxetic materials [1]. 
Unlike conventional materials, which undergo lateral expansion when 
subjected to uniaxial compression, auxetic metamaterials exhibit simul-
taneous contraction in all directions, effectively exhibiting a negative 
Poisson’s ratio [2]. Auxetic materials have garnered considerable atten-
tion as novel solutions for impact [3,4] or blast protection [5], sports 
equipment such as helmets [6] or shoes [7] and wearable electronics 
[8]. In biomedical applications, auxetic materials find utility in vari-
ous areas [9], including coronary stents [10–12], bio-compatible porous 
implants [13–15], and scaffolds for tissue engineering [16–18]. The un-
derlying internal organization responsible for the auxetic behavior has 
been replicated across multiple length scales, ranging from materials 
with nanoscale features [19,20], to materials with microscale dimen-
sions [21], millimeter-sized features [22], and even structures spanning 
meters in one or two dimensions [23].

* Corresponding author.

The global mechanical response of mechanical metamaterials is in-
trinsically linked to their internal periodic structure. Consequently, re-
searchers primarily focus their attention on the design of the smallest 
building block - the unit cell [24]. Among auxetic metamaterials, one 
might distinguish several most common design motifs [1], such as hon-
eycomb/reentrant cells [25,26], chiral patterns [27,28], and rotating 
rigid structures [29,30]. The reentrant unit cell, for example, consists 
of interconnected straight beams that fold inward upon compression, 
resulting in a negative Poisson’s ratio. In this case, the Poisson’s ra-
tio value directly correlates with the geometrical characteristics of the 
unit cell, such as the length of the struts and the angle between them. 
The enduring popularity of the classical reentrant design stems from 
the clear deformation mechanism behind its negative Poisson’s ratio 
[31]. Alternatively, for “intuitive” design, more direct methods can be 
employed in the search for new unit cells. For instance, Körner et al. 
[32] used eigenmode analysis to describe a family of lattices containing 
non-straight elements with auxetic behavior. Notably, a chiral lattice 
with sinusoidal curvy beam connections, as depicted in Fig. 1A, can ex-
hibit auxetic behavior depending on the unit cell’s geometry. Taking 
this concept further, Clausen et al. [33] utilized topology optimization 
to tune the Poisson’s ratio of the lattice under tensile load, achieving 
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Fig. 1. Design of the unit cell and the resulting metamaterial. A: Base design is derived from a quadratic lattice (light grey), which is distorted to a sinusoidal lattice 
(dark grey) as described in [32]. B: Geometrical parameters 𝑔, and 𝑐 defining the geometry of the unit cell.
values ranging from -0.8 to 0.8. It is worth noting that curved geome-
tries have recently gained prominence for enriching the design space 
and expanding the range of admissible properties in mechanical meta-
materials [34–36].

It has been observed that contact between the elements of metama-
terials can occur under sufficiently large compressive strain [37]. Con-
sequently, the response of the metamaterial suddenly becomes much 
stiffer as compared with the initial stage of compression [38]. There-
fore, depending on the applied deformation, such a lattice may exhibit 
two distinctly different behaviors, effectively switching between them. 
In general, the ability to control the behavior of metamaterials by 
manipulating their internal architecture after fabrication is highly de-
sirable. To achieve this, both mechanical and non-mechanical external 
stimuli can be harnessed. For instance, non-mechanical control through 
temperature changes has shown the potential to alter the Poisson’s 
ratio of metamaterials containing active materials such as hydrogels 
[39], shape memory polymers [40], or liquid crystal elastomers [41]. 
The employment of magnetic interaction between the metamaterial’s 
components enables another avenue for tuning their behavior [42–44]. 
Additionally, more exotic next-generation smart materials, capable of 
adapting and learning [45–47], might enable the attainment of more 
intelligent control over architectural changes in metamaterials, thus ex-
panding their application scope. For already reported metamaterials, 
control via mechanical stimuli relies on intricate coupling between var-
ious loading sequences [48], instability-driven transformations [49,50], 
or self-contact between elements [51]. The latter approach relies solely 
on the internal geometry and, due to its relative simplicity, can open 
new avenues for introducing novel functionalities in metamaterials that 
emerge from changes in behavior during deformation. For example, the 
implementation of contact between unit cells has enabled the realiza-
tion of ‘if-then-else’ functionality [52]. Similarly, alternating Poisson’s 
ratios under load have been achieved through sequentially activated 
self-contacts [53] or sliding and locking mechanisms [54]. Helou et al. 
[55] utilized self-contact in a classical rotating-square design to embed 
electrical circuits that can close upon self-contact, demonstrating basic 
computational capabilities stemming from the rational architecture of 
metamaterials. These mechanisms for smart property switching are part 
of the emerging field of mechanical computing [56].

Self-contact presents a unique opportunity to facilitate functionali-
ties based on discrete states and to achieve transitions resulting from 
abrupt changes in mechanical responses. In this context, the previously 
mentioned sinusoidal lattice [33,34,37] exhibits intriguing properties: 
when subjected to compression, we observe alterations in lattice con-
nectivity due to self-contact, which can be harnessed to influence the 
resulting Poisson’s ratio. In this study, we systematically evaluate the 
contact-induced changes in mechanical response concerning the unit 
cell’s geometry. Furthermore, we apply these metamaterials in the de-
sign of scales-like devices, capitalizing on the anticipated auxeticity 
2

switches.
2. Unit cell and design space

2.1. Shape definition

Fig. 1 presents the mechanical metamaterial based on curvy con-
nections. For parameterized scripting of the unit cell, we utilized the 
Grasshopper module of Rhino 7 (Robert McNeel & Associates, Seattle, 
USA). The unit cell of the metamaterial under consideration is uniquely 
defined by the shape of a single beam. By employing circular patterning 
around its bent end, followed by horizontal and vertical mirroring, we 
derived the unit cell depicted in Fig. 1B. We achieved a diverse range 
of unit cell geometries by manipulating two key geometric parameters: 
gap size (𝑔) and contact length (𝑐). It is worth noting that the angle 
𝛼, as shown in Fig. 1B, is exclusively determined by 𝑔 and 𝑐, both ex-
pressed as percentages of the unit cell’s width/height. Additionally, we 
maintained a consistent beam cross-section by setting the curvy beams’ 
widths to 5% of the unit cell’s size.

2.2. Shape changes

We demonstrate the parameter space of the considered designs 
(Fig. 2), alongside two examples of the “most extreme” unit cells. This 
two-dimensional design space was probed in 15 equidistant steps per 
parameter. The range of values for contact length (𝑐) spanned from 1% 
to 50% of the unit cell size, while gap sizes (𝑔) ranged from 1% to 
15%. The boundaries for the gap size were established to prevent ini-
tial contact at minimum value and ensure gap closure at a reasonable 
compression level when set to 𝑔 = 15%. This approach effectively cap-
tures the influence of gap size 𝑔 and contact length 𝑐 on the angle 𝛼
and ensures the overall continuity of the parameter space, as depicted 
in Fig. 2.

3. Simulations for characterization

3.1. Simulation setup

With sufficient coverage of the parameter space, we conducted a 
detailed investigation into the mechanical behavior of selected meta-
materials under compression using finite element (FE) analysis. This 
analysis was performed using COMSOL Multiphysics 6.0 (Comsol AB, 
Stockholm, Sweden), with a specific focus on studying the changes in 
properties induced by self-contact. Prior to importing the 2D represen-
tations of the unit cells, we applied a 25% shift in both the vertical 
and horizontal directions. This adjustment was made to ensure more 
reliable meshing and simplify the imposition of periodic boundary con-
ditions. Additionally, we filleted sharp corners to prevent singularities 
during simulations. Each geometry was meshed with a minimum of 
five second-order quad elements spanning the width of the curvy beam 

structures.
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Fig. 2. Parameter space (𝑔 and 𝑐) coverage with angle 𝛼 shown in color. Two extreme examples of the unit cells are shown in the corners.
We selected an incompressible neo-Hookean material model, with a 
Lamé parameter (𝜇) set to 2.93 MPa, to closely match the properties of 
the 3D-printable NinjaFlex thermoplastic polyurethane (TPU) filament, 
as reported in [57]. Furthermore, in Section 4, we employed experimen-
tal testing to assess the adequacy of this material model. To accurately 
capture the mechanical response of the unit cell, including self-contact, 
we incorporated geometric non-linearity and allowed contact between 
all boundaries. The application of strain and periodicity to the lattice 
was facilitated by a set of periodic boundary conditions.

𝑣(𝑇 ) − 𝑣(𝐵) = −𝜀𝑦 ⋅ 𝑙0 (1)

𝑢(𝑇 ) − 𝑢(𝐵) = 0 (2)

𝑣(𝐿) − 𝑣(𝑅) = 0 (3)

𝑢(𝐿) − 𝑢(𝑅) = 𝑢(𝑝1) − 𝑢(𝑝2), (4)

with 𝑇 , 𝐵, 𝐿 and 𝑅 being the top, bottom, left and right boundaries, re-
spectively, and 𝑙0 being the initial height of the unit cell. Here 𝑣 and 
𝑢 are displacements in 𝑥 and 𝑦 direction. Note that further we assume 
that the height and width of the unit cell to be equal to 1 initially. 
In the boundary condition (1), we apply a compression strain 𝜀𝑦. The 
maximum applied strain was set to 3.5𝑔 or 25% of the initial height, 
whichever was lower (see Fig. 3). This limit was chosen to ensure the 
convergence of the simulation by preventing extremely large deforma-
tions after self-contact was reached. By analyzing the evolution of the 
coordinates of two corner points, we obtained the engineering and in-
stantaneous Poisson’s ratios 𝜈𝑒𝑛𝑔 and 𝜈𝑖𝑛𝑠𝑡 of the lattice, as defined by 
[58]:

𝜈𝑒𝑛𝑔 = −
𝜀𝑥

𝜀𝑦
(5)

𝜈𝑖𝑛𝑠𝑡 = −
𝜀𝑖𝑛𝑠𝑡,𝑥

𝜀𝑖𝑛𝑠𝑡,𝑦
(6)

Here, 𝜈𝑒𝑛𝑔 reflects the deformation of the metamaterial in relation to 
the initial undeformed configuration. For instance, if 𝜈𝑒𝑛𝑔 < 0, then it is 
guaranteed that the current width of the metamaterial under compres-
sion is smaller than the original one. In contrast, 𝜈𝑖𝑛𝑠𝑡 compares current 
strains to strains at the previous moment in time. Therefore, it might oc-
cur that 𝜈𝑒𝑛𝑔 is still negative while the metamaterial is in the process of 
expansion characterized by 𝜈𝑖𝑛𝑠𝑡 > 0. To be precise, each Poisson’s def-
inition relies on a differently defined strain 𝜀𝑒𝑛𝑔 and 𝜀𝑖𝑛𝑠𝑡. Strains 𝜀𝑒𝑛𝑔,𝑗
were calculated from the point coordinates, as depicted in Fig. 3. Specif-
ically, they were calculated with respect to initial dimension values 𝑙0,𝑗 , 
with 𝑗 = 𝑥, 𝑦:

𝑙𝑖,𝑗 − 𝑙0,𝑗
3

𝜀𝑒𝑛𝑔,𝑗 =
𝑙0,𝑗

(7)
Fig. 3. Meshed lattice with evaluation points and contact definition boundaries 
shown in green.

For 𝜀𝑖𝑛𝑠𝑡, we used previous dimension values 𝑙𝑖−1,𝑗 :

𝜀𝑖𝑛𝑠𝑡,𝑗 =
𝑙𝑖,𝑗 − 𝑙𝑖−1,𝑗

𝑙𝑖−1,𝑗
(8)

𝑙𝑖,𝑗 being the current distance between the corner points 𝑝1 and 𝑝2
in x- and y-directions for 𝜀𝑖𝑛𝑠𝑡,𝑥 and 𝜀𝑖𝑛𝑠𝑡,𝑦, respectively.

3.2. Results and discussion

In Fig. 4, we present a typical response of the unit cell, which can 
be divided into three distinctive zones or regimes (I-III) with two tran-
sition points (𝑃𝑆 and 𝑃𝐸 ) that can be evaluated for each unit cell. In 
the initial phase of compressive loading, we observe auxetic behavior 
(regime I), characterized by a negative Poisson’s ratio (both 𝜈𝑖𝑛𝑠𝑡 and 
𝜈𝑒𝑛𝑔). Subsequently, self-contact occurs at point 𝑃𝑆 (𝜀 = 𝜀𝑐𝑜𝑛𝑡), leading 
to a change in topology. This change results in a significant jump in the 
instantaneous Poisson’s ratio (𝜈𝑖𝑛𝑠𝑡), followed by a gradual increase in 
the value of the engineering Poisson’s ratio (𝜈𝑒𝑛𝑔) in regime II. As com-
pression continues, the lattice may reach its initial width at point 𝑃𝐸 , 
coinciding with 𝜈𝑒𝑛𝑔 = 0. Finally, the lattice continues to expand beyond 
its initial width, maintaining positive values for both 𝜈𝑒𝑛𝑔 and 𝜈𝑖𝑛𝑠𝑡 in 
regime III.

A similar observation can be made regarding the evolution of 
the metamaterial’s stiffness during compression. Upon self-contact, the 
metamaterial undergoes a noticeable stiffening, which is visible on the 
stress-strain curve (Fig. 4B). In a similar fashion to 𝜈𝑖𝑛𝑠𝑡, the instanta-
neous Young’s modulus 𝐸𝑖𝑛𝑠𝑡, defined as the slope of the stress-strain 
curve at each specific point, exhibits a step-like jump upon contact 
(Fig. 4B). The difference in stiffness (𝐸𝑖𝑛𝑠𝑡) before and after self-contact 
can be attributed to the underlying deformation mechanisms. Prior to 

contact, deformation is mostly facilitated via the rotation in the lattice’s 
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Fig. 4. Typical response of the metamaterial during compression. A: Poisson’s ratio I: Auxetic behavior is seen (𝜈𝑖𝑛𝑠𝑡 < 0 and 𝜈𝑒𝑛𝑔 < 0). II: After self-contact at strain 
𝜀𝑐𝑜𝑛𝑡 (point 𝑃𝑆 ), switching of instantaneous Poisson’s ratio sign can be observed (𝜈𝑖𝑛𝑠𝑡 > 0 and 𝜈𝑒𝑛𝑔 < 0). III: Expansion beyond initial width after reaching 𝜀𝑒𝑥𝑝 (point 
𝑃 ) corresponding to the case of 𝜈 > 0 and 𝜈 > 0. B: Stress 𝜎 and 𝐸 during compression.
𝐸 𝑖𝑛𝑠𝑡 𝑒𝑛𝑔 𝑖𝑛𝑠𝑡

nodes. However, this rotational motion becomes constrained upon self-
contact, resulting in a deformation dominated by bending of the beams 
in regimes II and III (Fig. 4 and supplementary video 1). It is worth 
noting that stiffening of the metamaterial also leads to an increase in 
the level of internal stresses. The maximal stresses are usually observed 
in the lattice nodes and in contact zones; however, due to the length 
of such zones, there is no pronounced stress concentration after self-
contact that might lead to crack initiation.

The strain at which self-contact occurs (𝜀𝑐𝑜𝑛𝑡) is depicted for each 
geometry from the considered parameter space in Fig. 5A. Here we can 
observe the anticipated relation between 𝜀𝑐𝑜𝑛𝑡 and 𝑔. Indeed, specimens 
with larger initial gap 𝑔 require larger strain before self-contact takes 
place. Specifically, 𝜀𝑐𝑜𝑛𝑡 spans from 1% to 21% for the minimum and 
maximum gap sizes 𝑔, respectively. In contrast, we observe a minimal 
influence of the contact length (𝑐) on the strain 𝜀𝑐𝑜𝑛𝑡 required for self-
contact. This indifference can be attributed to the fact that during the 
initial stages of compression, deformation primarily occurs due to bend-
ing and rotation near the intersection nodes, while straight elements 
do not significantly contribute to 𝜈𝑖𝑛𝑠𝑡 in stage I. However, the contact 
length (𝑐) plays a crucial role in determining the height of the jump in 
the value of 𝜈𝑖𝑛𝑠𝑡 upon reaching 𝜀𝑐𝑜𝑛𝑡.

While for all considered geometries 𝜈𝑖𝑛𝑠𝑡 increases after self-contact, 
in some cases it does not reach 0 and continues to be negative. This 
behavior is typical for lattices with large contact lengths (𝑐 > 40%), as 
indicated by the points marked with a cross in Fig. 5A. Consequently, 
these metamaterials do not undergo a switch in the sign of the instan-
taneous Poisson’s ratio (𝜈𝑖𝑛𝑠𝑡) and maintain their auxetic behavior after 
self-contact. The consequence of this behavior is an inability to return 
to the original width, as the lattice continues to shrink laterally during 
subsequent compression.

The distinction between designs that switch or don’t switch their 
auxeticity due to self-contact visible in Fig. 5A can assist in selecting 
unit cells tailored for a specific use-case. For instance, if maintaining 
the auxeticity after self-contact is favorable for impact engineering, 
the lattices with large enough 𝑐 are well-suited according to this cri-
4

terion. These designs offer the dual benefit of maintaining auxeticity 
and the ability to significantly stiffen the material upon reaching a pre-
programmed deformation level [38]. At the same time, the switch in 
the sign of instantaneous Poisson’s ratio can be harnessed for novel 
use-cases, such as mechanical if-then switches activated upon achiev-
ing specific compressive strains. Since self-contact in such lattices only 
facilitates a change in the sign of 𝜈𝑖𝑛𝑠𝑡 rather than 𝜈𝑒𝑛𝑔 , it becomes es-
sential to determine the strain value 𝜀𝑒𝑥𝑝 at which the metamaterial 
expands beyond its initial width. Fig. 5B utilizes color coding to indi-
cate the values of 𝜀𝑒𝑥𝑝. For points in the parameter space marked by a 
cross, no expansion occurs because the corresponding unit cells do not 
undergo a switch in auxeticity. For points marked by empty circles, ex-
pansion occurs; however, after reaching 25% compressive strain, the 
lattice’s width is still smaller than the initial width. From a practical 
standpoint, we limit our focus to lattices that expand beyond their ini-
tial width at compressive strains less than 25%. This mapping of 𝜀𝑒𝑥𝑝
onto the geometrical parameters defining unit cell design allows for 
the deliberate selection of geometries with specific sequences of lateral 
shrinking and expansion during compression. Since expansion occurs at 
larger values of strain than self-contact, we additionally utilize experi-
mental testing to ensure accuracy of our model.

4. Experimental testing

4.1. Experimental setup

To confirm the observed non-trivial behavior and validate the ob-
tained dependencies, we conducted compressive experiments on 3D-
printed specimens. We carefully selected 10 different unit cell designs 
to ensure maximum representation of the parameter space, as illus-
trated in Fig. 6. These lattice specimens were fabricated using fused 
filament fabrication (FFF) with NinjaFlex TPU (NinjaTek, Lititz, USA). 
The specimens were composed of 20 mm unit cells arranged in a 3 × 3 
pattern. We performed compression testing on a uniaxial testing ma-
chine (ZwickRoell, Ulm, Germany) equipped with a 10 kN loadcell. The 
load cycle was comprised of 15 mm vertical compression with subse-

quent unloading at a constant testing speed of 15 mmmin−1 . Note that 
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Fig. 5. A: Value of the self-contact strain 𝜀𝑐𝑜𝑛𝑡 for different unit cells in the design space. Combinations marked by cross do not exhibit switch in the sign of the 
Poisson’s ratio. B: Strain at the onset of expansion beyond the initial width 𝜀𝑒𝑥𝑝 for different geometrical parameters 𝑐 and 𝑔. Empty circles mark combinations 
of geometrical parameters for which the expansion happens for strains exceeding 25%. Cross sign marks geometrical parameters for which 𝜈𝑖𝑛𝑠𝑡 < 0 even after 
self-contact.

Fig. 6. Experimentally tested specimens are depicted as filled circles in the parameter space. The evolution of specimen shape throughout compression. I: uncom-
pressed state (𝜀 = 0), II: self-contact (𝜀 = 𝜀𝑐𝑜𝑛𝑡), III: start of the expansion beyond initial width (𝜀 = 𝜀𝑒𝑥𝑝), IV: maximum compression (𝜀 = 25%). Vertical lines indicate 
the initial width of 60 mm, tracked points are shown as filled circles in I.
15 mm vertical displacement on the considered specimens corresponds 
precisely to 25% strain. We used video recordings for characterization 
of the lattice’s deformation under load. The positions of two points on 
the lattice (indicated by circles in Fig. 6) were automatically tracked to 
retrieve two values of interest: the strain of self-contact (𝜀𝑐𝑜𝑛𝑡) and, if 
observable, the strain of expansion beyond initial width 𝜀𝑒𝑥𝑝.

Fig. 6I-IV provides a visual representation of the status of the tested 
specimen at various compression levels. The act of compressing the 
specimen results in the closure of the initial gap, introducing self-
contact in predefined areas, as shown in Fig. 6II. Additionally, we 
observe lateral shrinkage of the specimen concerning the lines that in-
dicate the initial width. This observation is indicative of the specimen’s 
auxetic behavior before self-contact occurs. Upon self-contact that hap-
pens nearly simultaneously between all contact zones, the shrinking 
process halts, and the specimen begins to undergo lateral expansion. 
5

This expansion is evident as the specimen touches the white lines 
representing the initial width in Fig. 6III. Furthermore, it expands be-
yond these lines with an increase in applied compressive strain, as 
demonstrated in Fig. 6IV (for specimen compression, see supplemen-
tary video 1).

4.2. Validation and characterization

Qualitatively, we have confirmed the behavior previously observed 
in simulations, and we have identified the distinct phases of mechan-
ical response, as depicted in Fig. 4. The validation of self-contact and 
expansion values for all tested specimens empowers us to harness these 
mechanical response phases for practical applications. For all 10 tested 
specimens, we extracted values of 𝜀𝑐𝑜𝑛𝑡 and 𝜀𝑒𝑥𝑝 where possible. When 
comparing experimentally obtained self-contact strain 𝜀𝑐𝑜𝑛𝑡 with nu-
merically predicted values, we find a substantial agreement with an 
𝑅2 value of 0.9401 (Fig. 7A). As applied strain increases, lattices with 

shorter contact lengths (𝑐) undergo an auxeticity-switch. Consequently, 
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Fig. 7. Simulations vs experiments. A: Strain at observed self-contact 𝜀𝑐𝑜𝑛𝑡. B: Onset of expansion beyond the initial width 𝜀𝑒𝑥𝑝 .
we compared numerically predicted and experimentally obtained ex-
pansion strains (𝜀𝑒𝑥𝑝) for such lattices, as shown in Fig. 7B. Despite the 
need to exclude lattices that either do not expand at all or don’t exhibit 
expansion beyond the initial width for applied strains less than 25%, 
we observe a strong agreement between experiments and simulations, 
with an 𝑅2 value of 0.9083. It is worth noting that numerical simula-
tions generally slightly overestimate strains associated with self-contact 
and expansion beyond the initial width as compared with experiments. 
This minor discrepancy may be attributed to geometric imperfections 
introduced by the 3D printing process. Specifically, the gap size in the 
printed samples might be smaller than designed due to finite value 
of extrusion width that cannot be arbitrary low, resulting in slightly 
thicker printed beams.

In summary, our performed numerical simulations not only cap-
ture the real auxeticity switch induced by self-contact in the considered 
metamaterials but also provide us with reliable estimates of the specific 
strain levels at which contact or expansion beyond the original bound-
aries occurs.

5. Scales demonstrator

To demonstrate the applicability of the introduced design frame-
work, we developed a discrete scales demonstrator that relies on the 
switches in Poisson’s ratio caused by self-contact in the metamate-
rial. We created four specimens with identical outer dimensions (as 
used in Section 4) but with different geometrical parameters (𝑐 and 
𝑔). These specimens were 3D-printed using conductive Filaflex TPU fil-
ament (Recreus, Elda, Spain). Utilizing the information from Fig. 5B, 
we selected specimens with varying expansion strains (𝜀𝑒𝑥𝑝

𝑖
), where 

𝑖 = 1... 4. These strains amounted to 5.2%, 13%, 20.9% and >25% respec-
tively. The 3D-printed specimens were placed within an enclosure, as 
illustrated in Fig. 8A. In their undeformed state, each specimen made 
contact with corresponding electrodes integrated into the enclosure, 
which were connected to pairs of LEDs, as depicted in Fig. 8B. These 
LEDs were placed behind their corresponding specimens to illuminate 
them upon reaching pre-programmed strains that results in closure of 
the electric circuit. To ensure even load distribution during compres-
sion, we covered the assembled system with a lid. Subsequently, the 
system was positioned in a universal testing machine, with two perpen-
dicular mirrors placed behind it to facilitate video capturing of three 
sides of the scale demonstrator.

In the initial uncompressed state, all metamaterials are illuminated 
from inside the scales, as shown in Fig. 8C. Almost immediately after 
the compression begins, the lattices lose contact with the electrodes due 
to their auxetic behavior, which facilitates lateral shrinking, resulting 
in all LEDs switching off. As compression continues, the LEDs gradu-
ally light up the connected lattices one by one. The side of the cube 
6

containing the metamaterial with the lowest expansion strain (𝜀𝑒𝑥𝑝1 ) 
is the first to illuminate. In a cascading manner, the specimens light 
up as their specified expansion strains (𝜀𝑒𝑥𝑝

𝑖
) are reached. During un-

loading, the illumination on the sides of the specimens switches off in 
the opposite sequence until all LEDs are off when the applied strain 
drops below 𝜀𝑒𝑥𝑝1 . In addition, at the latest stage of unloading, when the 
metamaterials return to their initial undeformed state, all sides of the 
scales demonstrator are illuminated again, indicating that the scales are 
“self-calibrated” and ready for the next measurement. This behavior is 
proven to be repeatable during multiple consecutive loading-unloading 
cycles for applied strains less than 25% (for a scales demonstration, see 
supplementary video 2).

Since values of 𝜀𝑒𝑥𝑝
𝑖

are known and, moreover, purposefully selected, 
LED states enable us to deduct the applied strain, or at the least, place 
it within a specific range. If all LEDs are off, it indicates that the applied 
strain is lower than 𝜀𝑒𝑥𝑝1 . If only two LEDs are on, it suggests that the 
applied strain falls within the range between 𝜀𝑒𝑥𝑝2 and 𝜀𝑒𝑥𝑝3 . Moreover, 
this concept can be repurposed for measuring force instead of strain. 
Within the proposed design, the reaction force monotonically increases 
with an increase in applied compressive strain, as observed in load-
cell data. This is because there are no snap-through transitions within 
the metamaterial. Consequently, a correspondence between force and 
strain, and thus between force and LED states, can be established. Ad-
ditionally, within this concept, we can even detect faults in the electric 
circuitry. For example, if one of the LEDs fails to illuminate after com-
plete unloading, it may indicate a faulty contact.

This approach can therefore be implemented for targeted applica-
tions of the presented lattice. Here, not only the expansion but also the 
sudden change of the sign of Poisson’s ratio upon self-contact can be 
considered as a feature, with results from Fig. 5 serving as a lookup 
table to further enhance the utility of metamaterial.

6. Conclusion

In this study, we explored the concept of mechanical metamaterials 
capable of switching their Poisson’s ratio at a pre-programmed strain 
level (𝜀𝑐𝑜𝑛𝑡) by harnessing self-contact between metamaterial elements. 
For a selected design inspired by metamaterials with curvy beams, we 
assessed the relationship between the geometrical characteristics of unit 
cells and the resulting mechanical response through simulations and ex-
perimental testing. In the continuous design space, we identified geom-
etry parameters that result in different shrinking-expansion sequences. 
We demonstrated, that for specific unit cells, self-contact immediately 
changes the instantaneous Poisson’s ratio, but the metamaterial contin-
ues to shrink laterally upon subsequent compression. Meanwhile, for 
another class of unit cells, self-contact facilitates a change in the effec-
tive Poisson’s ratio sign, leading to the expansion of the metamaterial 
and eventual expansion beyond its initial dimensions for larger com-

pressive strain (𝜀𝑒𝑥𝑝). We showed how these critical strains (𝜀𝑐𝑜𝑛𝑡 and 
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Fig. 8. Discrete scales demonstrator. A: Components of the demonstrator. B: Circuitry of the demonstrator containing two LEDs per lattice with pre-programmed 
expansion strain 𝜀𝑒𝑥𝑝1−4 . C: Scales during compression testing, mirrors allow observation of three sides at once. Initially all circuits are closed at 𝜀0 = 0. Subsequently, 
all LEDs switch off until the lattices close their circuits at individual expansion strains 𝜀𝑒𝑥𝑝 .
𝜀𝑒𝑥𝑝) can be tuned via the geometry of the unit cell to enable novel 
functionalities in the corresponding metamaterials. Utilizing numerical 
and experimental results, we created a demonstrator model of a discrete 
scales-like device capable of indicating the applied strain through the 
statuses of multiple LEDs. During compression, the sides of the demon-
strator light up one by one upon reaching the selected critical strains, 
triggered by switches in the Poisson’s ratio caused by self-contact. It is 
important to note that in this proposed concept the self-contact func-
tionality is integral part of the metamaterial’s load-bearing core, which 
significantly simplifies the design. The findings presented here can be 
applied to implement the lattice’s switching capabilities in complex ap-
plications, such as soft robotics or lifelike stimuli-responsive material 
systems.
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