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ABSTRACT

This Letter discusses elastic metamaterials incorporating curved beams in their architecture. Through employing Bezier splines, we reveal a wide
versatility of geometrical designs of the unit cells and the consequent programmability of bandgap structures. By analyzing more than ten thousand
possible specimens altogether, we highlight the similarity between dynamic properties of metamaterials formed by curves with different geometries
defined via three variables only that correspond to the coordinates of control points of the Bezier spline. In particular, we establish the importance of
such parameter as effective curve length in defining the probable positions of bandgaps. This study shows, in particular, that the bandgap ratio can
reach 71% for metamaterials with proposed curved beams—a noticeable contrast with no bandgaps in their counterpart with straight elements. The
employment of the deep learning model enables us to effectively predict passband–stopband structure in such metamaterials with satisfactory
accuracy, potentially accelerating the design of metamaterials assembled from versatile unit cells.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0156529

According to just one from a wide variety of definitions, metama-
terials are artificial materials capable of demonstrating unusual and
unconventional behavior, thanks to their involved internal organiza-
tion.1 Among different classes of metamaterials, one might distinguish
so-called elastic metamaterials—materials with rational internal archi-
tecture that gives rise to the various phenomena associated with the
propagation of elastic waves.2 Still, the majority of the studies focus on
harnessing intricate structure–properties relationships to facilitate the
formation of bandgaps or stopbands—frequency ranges for which
waves cannot be sustained by material.3 The sensitivity of the waves to
the structure of the metamaterial is closely associated with its periodic
nature. In addition to some aperiodic or quasiperiodic exceptions,4,5

metamaterials are usually defined by the unit cell—building block that
repeats in two or three dimensions.6 Such periodicity makes possible
the realization of Bragg scattering7 directly associated with the forma-
tion of bandgaps for selected frequencies. Additionally, in elastic meta-
materials, the phenomenon of local resonance is commonly utilized to
adjust the bandgap structure within the lower frequency range.8,9 In
general, the geometry of the unit cell, together with the symmetry
group of the repeating pattern, defines the dispersion relations in the

metamaterial. Furthermore, the dispersion relations in the elastic
metamaterials might be controlled via external deformation, thanks to
the changes in geometry10 and induction of internal elastic stresses.11

In this regard, one of the common strategies for tuning dispersion
properties in metamaterials is based on harnessing the loss of
stability.12

Loss of stability in periodic structures might lead to the forma-
tion of wavy interfaces13 and, in some cases, to alternating the period-
icity of the metamaterial.14 Such geometric changes significantly alter
the dispersion curves and can be employed to control and tune the
positions and widths of bandgaps.15,16 A “curliness” of the resulting
geometry obviously makes a significant contribution toward resulting
metamaterial behavior. Therefore, the incorporation of the curved
elements in the initial design of the elastic metamaterials might be a
sound strategy for programming their properties. In this case, even
without the external deformation triggering the instability-driven
transformations, one might have a wide design space to facilitate the
required performance. At the same time, many reported metamateri-
als are still dominantly based on straight elements17 or relatively
simple geometries,18 partially due to manufacturing limitations.
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Some exceptions can be found in the case of horseshoe19 and so-
called chiral metamaterials, often incorporating curves in their
design.20 Simultaneously, even for very classical reentrant design,
replacement of the straight elements by curvy beams might lead to a
very diverse bandgap structure.21 When necessary for analytical solu-
tions, the replacement non-straight beams are usually defined via rel-
atively simple functions. In contrast, it was recently shown that
exploiting more versatile Bezier curves enables better tunability and a
wider range of mechanical properties.22,23 In this Letter, we follow
this route and demonstrate the benefits of the Bezier curve for the
modification of the classical square lattices in elastic metamaterials.

Bezier splines are continuously differentiable curves that can be
obtained recursively.24 Any Bezier curve is defined by the set of basis
functions and by the coordinate of nodes, facilitating a very wide vari-
ability of the resulting geometries. In this Letter, we consider Bezier
curves of order two with five equidistant nodes [see Fig. 1(a)]. In this
case, the five variables (y1; y2; y3; y4; y5) reflecting the y-coordinate of
control points uniquely define the resulting curve and, consequently,
the unit cell. Figure 1(b) shows the unit cell of the considered metama-
terials that incorporates Bezier curves. If coordinates of control points
are selected randomly, the resulting metamaterial belongs to p4 wall-
paper group. To facilitate additional symmetries and generate lattices
belonging to the p4g group, only Bezier curves with y4¼ y2 and y5¼ y1
were considered, thereby reducing the number of free variables from
five to three. To maintain continuity at the nodes, the lattice shown in
Fig. 1(b) is assembled from alternating original splines and their mir-
ror counterparts. As one may see, the replacement of the straight
beams by curvy ones changes the unit cell, simultaneously increasing
its area twofold. To obtain the dispersion diagram for in-plane vibra-
tion modes and analyze the stopband–passband structure, we super-
imposed Bloch–Floquet boundary conditions in COMSOL 5.6 and
swept through the perimeter of the Irreducible Brillioun zone (IBZ)25

[Fig. 1(d)]. The curved beams with end-to-end distance s and square
cross section of 0:01s2 were meshed into at least 50 elements each and
modeled under Euler–Bernoulli assumptions. The beams were made
of linear elastic materials with Young’s modulus E ¼ 1 MPa,
Poisson’s ratio � ¼ 0:4, and density q ¼ 1000 kg=m3. The normalized
frequencyx ¼ fs=

ffiffiffiffiffiffiffiffi
E=q

p
was found for wavevector k along the perim-

eter of IBZ, where f is the corresponding eigenfrequency. Since x is

normalized to the lattice period, to simplify further, we assume s¼ 1.
To avoid intersections between the neighboring curves, the maximal
values of yi were limited by 0.5. In total, we generated 18000 different
geometries of the metamaterial and obtained corresponding dispersion
diagrams. To demonstrate the effectiveness of the curved beams in
regard to engineering bandgap structure, Fig. 2 compares the disper-
sion diagrams obtained for the curves defined by coordinates
ðy1; y2; y3Þ ¼ ð0:472a; 0:043a; 0:352aÞ for different values of a rang-
ing from 0 to 1. As one may see, in the initial configuration with
straight beams, no bandgaps are observed below x ¼ 0:8. With an
increase in the curliness, corresponding dispersion curves shift toward
lower frequencies, simultaneously with the opening of the bandgaps at
different frequency ranges.

Figure 2 captures only one possible geometry of the Bezier spline.
To get a better understanding of the versatility of the geometry–
bandgap relationship, we extract two characteristics for each generated
metamaterial: length of the base Bezier curve (lc) and bandgap ratio w.
Bandgap ratio w is defined as w ¼

P
hi=xmax � 100%, where hi is the

width of the ith bandgap appearing below the maximal frequency of
xmax ¼ 0:8. In other words, w is the probability of randomly picking
the frequency inside the bandgap for the specific metamaterial. We
intentionally do not name this value “bandgap width” to avoid confu-
sion with a more common definition of bandgap width.26 Figure 3(a)
shows the dependency of w on the length of the used Bezier splines for
all considered metamaterials. It is clear that there are multiple curve
geometries with the same total length. Simultaneously, for the higher
curve lengths lc, a wider interval of possible w (and more versatile
bandgap structures) is observed, especially if compared with metama-
terial assembled from straight beams. For example, bandgap ratios
between 17% and 65% are achievable when the length of the Bezier
beam is fixed at lc¼ 2. The bandgap structures obtained for the meta-
materials based on three distinct Bezier curves with lc¼ 2 are depicted
in Fig. 3(b). Significant difference in elastic wave propagation can be
observed for metamaterials based on three selected geometries. Note
that the restriction on the yi values forces the upper bound on the
maximal length of the Bezier curve equal to 2.84, which corresponds
to the vector y ¼ ð0:5;�0:5; 0:5Þ.

Figure 3(c) provides another way of analyzing the bandgap struc-
tures for a large set of metamaterials based on Bezier splines. Here, the

FIG. 1. (a) Bezier curve defined by y-coordinates of control points (red). The top half
(green) is symmetric with bottom half (blue). (b) The design of elastic metamaterial
incorporating Bezier curves. Red square highlights minimal unit cell, while direct lattice
basis vectors a1 and a2 define the tiling directions. (c) Direct lattice. (d) Reciprocal
lattice with highlighted irreducible Brillioun zone (IBZ) and G� X � M perimeter.

FIG. 2. Dispersion diagrams for the metamaterials assembled from the Bezier
curves with different amplitudes. The corresponding curves are shown at the top.
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probability of observing bandgap w is shown as a function of the fre-
quency x. In other words, the value of the y-axis here corresponds to
the probability for randomly selected metamaterial to have bandgap at
the frequency x. One may see that no bandgaps are possible for low
enough frequencies x. This is an expected behavior due to long-wave
modes for P- and S-waves that always exist. Simultaneously, different
selected frequencies have non-equal probabilities of appearing inside
the bandgap zone in considered curvy beams metamaterials. In gen-
eral, frequencies in the lower diapason of the considered range
(x � 0:4) are more likely to be located within the bandgap in compar-
ison with frequencies from the higher half (e.g., x > 0:4). We associ-
ate the observed non-uniform dependency of wðxÞ vs x with the
overall geometry of the metamaterial and its periodicity.

Figures 3(a) and 3(c) clearly show the complexity of the relations
between the geometry of the base Bezier spline and resulting disper-
sion diagrams. However, they do not reveal if there is a preference for
the exact positions of the stopbands in regard to the curve shape.
Considering that here we take into account only curves defined by
four intermediate equidistant control points, the earlier introduced
curve length lc remains the dominant geometrical factor. Figure 4 vali-
dates this observation by demonstrating contour plot connecting lc, x,
and wðxÞ. To generate this plot, the dataset with all generated Bezier
splines was split into 93 bins, grouping the curves with similar lengths.
Due to the rationally generated dataset, each bin contained exactly 200
splines, resulting in 200 different passband–stopband structures for
each bin. The color in Fig. 4 reflects the probability of having a
bandgap for the selected frequency x among the metamaterials gener-
ated from the curves of the specific length lc. First, similar to Fig. 3(c),
no bandgaps in any of the considered specimens are observed for very
low frequencies represented at the left-most part of the plot. However,
the critical minimal value of x for which the low-frequency bandgap
is not observed decreases with an increase in the length of the Bezier
spline. Second, it is easy to observe that for each selected curve length
lc, there is a clear differentiation between frequency ranges correspond-
ing to stop- and passbands. In general, an increase in the curve length
lc leads to a continuous decrease in the central frequencies of probable
bandgaps, as can be seen in Fig. 4. The relative increase in the bandgap

probability for the metamaterials employing longer Bezier splines is
associated with the lower variability of the curve shapes due to applied
limitation on the maximal amplitude (y coordinate of the control
points). In general, the shift of the bandgap frequencies toward lower
values is associated with an increase in the effective distance between
nodes in the resulting metamaterial due to longer connecting Bezier
splines.

The intricate relationship between just four input values-
coordinates and bandgap structures encourages the employment of
machine learning as an efficient replacement for the Bloch–Floquet
analysis. The recent advances in deep learning and similar techniques
from an area of artificial intelligence enable prediction of the bandgap
structures and even inverse design of the metamaterials with desired
behavior.27,28 Every predictive network requires an adequate selection
of the input and output variables. While here an obvious input is just a
four-element vector y ¼ ðy1; y2; y3Þ defining the geometry of the
Bezier spline, we considered two possible options for output variables.
First, in order to fully describe the passband–stopband structure, we

FIG. 3. (a) Dependencies of bandgap ratio w on the length of Bezier spline lc. (b) Dispersion curves of metamaterials formed by three different Bezier curves with the same
length of lc¼ 2. (c) Probability to observe bandgap at the specific frequency for all considered specimens altogether.

FIG. 4. Contour plot illustrating probability to observe bandgap at the specific fre-
quency x in metamaterials generated with the help of Bezier curves of length lc.
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used the concept of bandgap vector.27–29 The considered frequency
range 0 < x � xmax was split into n¼ 500 narrow frequency bands
xmaxi=n � xi < xmaxðiþ 1Þ=n, where 0 � i < n for each band, if
no wavevectors at the perimeter of IBZ had corresponding normalized
frequency inside the band, and then the value of 1 representing stop-
band was assigned. Otherwise, the band was represented by the value
of 0 and classified as a passband, resulting in a 500-element bandgap
vector representing a whole passband–stopband structure. As the sec-
ond option, we considered a single-valued bandgap ratio w as the out-
put. The generated dataset was split into train and test sets in the
proportion of 90/10, and we used a relatively simple neural network
architecture consisting of 6 hidden layers with 64, 64, 128, 128, 256,
and 512 nodes, resulting in approximately 300 000 free parameters to
search during training. We have not performed any hyperparameter
tuning since here, and the main task was to demonstrate only the feasi-
bility of this approach for considered metamaterials with curvy beams.
Figure 5(a) shows the comparison between the real values of w
obtained by Bloch-Floquet analysis and w predicted by the trained
model. Note that this model was trained using a bandgap vector as
output, however, for the visualization, the bandgap ratio correspond-
ing to the predicted bandgap vector was calculated afterward. In gen-
eral, one might see the satisfactory quality of the prediction with R2

score on the test dataset reaching the value of 0.973. In general, pre-
dicting the passband–stopband structure is a hard task for neural net-
works since even for continuous change in the input coordinates,
narrow bandgaps can appear and disappear at different frequency
ranges. Figure 5(c) shows the comparison between bandgaps found
using finite element simulations (red) and predicted by the trained
neural network (orange) for the one selected metamaterial with below-
average prediction quality. In general, this comparison reveals a good
agreement between the bandgap positions and widths. However, it can
be observed that the neural network shifts the bandgap to a higher fre-
quency range around x � 0:3 while also merging two separate bandg-
aps for 0:6 < x < 0:7. The latter is a common mistake, likely
associated with the absence of a dispersion branch around x � 0:65
in “neighboring” metamaterials that have values of yi close to the

considered specimen. Similar to Fig. 5(a), Fig. 5(b) shows the compari-
son between the true values of w obtained by Bloch–Floquet analysis
and w predicted by the trained model, however, in this case, and the
trained model directly takes bandgap ratio w as an output. One might
see that this model outperforms the previous one reaching R2 ¼ 0:991
on the test dataset, which is expected due to the difference in the
learned output. The prediction for a single-valued output model is still
non-ideal in part due to opening narrow bandgaps. While we had no
goal to achieve the best possible prediction using a neural network, we
anticipate that nonstandard loss functions have to be employed for
more robust separation between passbands and stopbands during
training.

This short letter reveals the benefits of employing curved beams
defined by Bezier splines in the design of elastic metamaterials. The
switch from classical straight elements to curved ones enables control
over bandgap positions and widths while keeping the overall dimen-
sions of the metamaterial constant. The immutability of the dimen-
sions might be very important for applications of elastic
metamaterials, enabling very fast replacement of metamaterial-based
components in order to fulfill the new requirements. While curved
beams offer control over wave propagation, it should be noted that
their implementation sacrifices the effective stiffness of the metamate-
rial. Specifically, lattices assembled from Bezier curves exhibit signifi-
cantly lower effective Young’s modulus when compared to their
traditional straight-beam counterparts. Implementation of deep learn-
ing to predict passband–stopband structures and, in the future, to gen-
erate unit cells with the requested behavior will drastically accelerate
the creation process enabling designs of heterogeneous or gradient
metamaterials assembled from the unit cells with various shapes.
Simultaneously, integrating curved elements into the design of elastic
metamaterials might impose constraints on the admissible
manufacturing methods. Consequently, it becomes necessary to ana-
lyze these limitations and assess the practicality of using Bezier splines
in the design of elastic metamaterials for their future development.
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FIG. 5. (a) Comparison of bandgap ratios w obtained via simulations and predicted by a neural network with bandgap vector output. (b) Comparison of bandgap ratios w
obtained via simulations and predicted by a neural network with single-valued output. (c) Example bandgap structure with highlighted bandgap obtained via simulations (red)
and prediction by means of the first neural network (orange).
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