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Graphical Abstract

Abstract

Lattice-based mechanical metamaterials are known to exhibit quite a unique mechanical behavior owing to their rational
nternal architecture. This includes unusual properties such as a negative Poisson’s ratio, which can be easily tuned in reentrant-
exagonal metamaterials by adjusting the angles between beams. However, changing the angles also affects the geometrical
imensions of the unit cell. We show that by replacing traditional straight beams with curved ones, it is possible to control
oisson’s ratio of reentrant-hexagonal metamaterials keeping their overall dimensions constant. While the mechanical properties
f these structures can be predicted through finite element simulations or, in some cases, analytically, many applications require
he identification of architectures with specific target properties. To solve this inverse problem, we introduce a deep learning
ramework for generating metamaterials with desired properties. By supplying the generative model with a guide structure in
ddition to the target properties, we are able to generate a large number of alternative architectures with the same properties
nd express a preference for a specific shape. Deep learning predictions, together with experimental measurements, prove that
his approach allows us to accurately generate unit cells fitting specific properties for curved-beam metamaterials.
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1. Introduction

The extreme mechanical properties and unique behavior of mechanical metamaterials originate in their involved
nternal organization [1]. One of the most well-known and well-studied manifestations of unusual behavior is a
egative Poisson’s ratio in so-called auxetics [2]. In contrast to conventional materials that shrink laterally when
ubjected to uniaxial tension, auxetic materials undergo lateral expansion [3]. The key to the auxetic behavior is
idden in the rational internal architecture often consisting of primitive building blocks — unit cells. While it
s possible to combine diverse unit cells within the architecture to achieve specific macroscopic behavior [4–6],
raditional auxetic design is usually based on a single unit cell that repeats itself in two or three dimensions [7]. In
eneral, a wide variety of unit cell designs (reentrant [8], chiral [9,10], etc.) in 2D and 3D settings that transform
niaxial elongation to lateral expansion were proposed. Moreover, in 3D settings, unit cells can couple compression
nd twist deformations [11,12]. It is important to notice, that while elastic constants such as the Poisson’s ratio are
riginally introduced for infinitesimal deformations in isotropic (or orthotropic) materials, a conceptually similar
alue connecting traversal and lateral deformations has been actively employed to describe mechanical behavior for
arge deformations [13] or for anisotropic metamaterials [14]. Assuming the applicability of the Poisson’s ratio for
arge deformations, it was shown that it is possible to facilitate a transition from positive to negative Poisson’s ratio
ia elastic buckling [15] or external non-mechanical stimuli [16,17] in mechanical metamaterials.

For traditional mechanical metamaterials [8–10], the geometry of the unit cell univocally defines the overall
echanical behavior. Therefore, it is enough to perform corresponding analysis only for a single unit cell assuming

eriodic boundary conditions [18–21]. For a wide variety of lattice-based metamaterials with straight beams, the
ffective mechanical properties were obtained analytically [19] or with the help of numerical simulations [22].

thoughtful study on the triangular lattices [23] classified them using the symmetry class of the stiffness tensor.
ater, for a more general case, the classification of lattices based on their mechanical properties was performed using
achine learning [24]. Additionally, an intriguing coupling between normal and shear strains was accounted in a

omogenization of chiral metamaterials to describe a coupling between the bulk deformation and bulk rotation of
he metamaterial [25,26]. For the classical reentrant-hexagonal unit cell design shown in Fig. 1, analytical solutions
or the stiffness matrix were obtained by multiple authors using various homogenization methods and different
eam formulations [19,27–34]. In particular, it is established that the metamaterial demonstrates auxetic behavior
nly if the corresponding angle θ is negative (Fig. 1b); otherwise, the metamaterial possesses a positive Poisson’s
atio (Fig. 1a). By harnessing this dependency, metamaterials capable of reversibly switching their auxeticity were
ealized with the help of stimuli-responsive materials embedded into the architecture [16,35].

While the reentrant-hexagonal architecture provides an easy way for programming its Poisson’s ratio via
lteration of the angle, such geometrical change affects the overall size of the metamaterial. More specifically,
t is impossible to obtain two distinct reentrant-hexagonal metamaterials with different Poisson’s ratios that
imultaneously share the common overall dimensions and the number of unit cells. In this manuscript, we will
eveal how minor modification of the reentrant-hexagonal architecture might enable an extensive range of admissible
oisson’s ratios while keeping the dimensions of the unit cell constant. Instead of the classical unit cells shown in
ig. 1, we will consider unit cells constructed with the help of curved beams.

The versatility of the design for non-straight beams and the resulting intriguing interplay between their bending
nd lateral stiffnesses enable the enriched potential for programming the behavior of mechanical metamaterials
hrough a rational selection of the geometry of the unit cell [36,37]. For example, incorporating Bezier curves
n designs has been shown to widen the design space for chiral metamaterials [38] and achieve metamaterials
ith superior mechanical strength [39]. With the current advances in additive manufacturing [40], the fabrication
f lattices with curved beams is not more complicated than the fabrication of classical lattices [41]. While the
enefits of curved beams are quite obvious [42,43], their employment in the structure makes the analytical solution
or the mechanical behavior of metamaterials much harder [37,44]. Therefore, numerical methods, such as finite
lement analysis (FEA), are widely used to find corresponding mechanical constants. However, besides a forward
roblem of obtaining the properties for a specific geometry, from the application point of view, the inverse question
f searching for the geometry that will provide the requested mechanical response is even more important. Since
ultiple curves might generate unit cells with the same properties, the inverse problem becomes ill-posed and

equires more advanced solution methods.
The recent development of generative models in machine learning (ML) provides ideas on how to tackle this

ssue, with variational autoencoders (VAEs) [45] and generative adversarial networks (GANs) [46] having shown
2
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Fig. 1. Classical hexagonal unit cell with its degrees of freedom (a). Classical reentrant unit cell (b). Axial and lateral effective stiffness of
the general beam (c).

promising results for the generation of mechanical metamaterials [47,48]. These models learn a transformation to a
latent space, where each point corresponds to a valid design. When applied to metamaterials, the dimensions of this
space are usually connected to geometric features, which easily allows to interpolate between different designs [47].
However, learning a mapping, where some dimensions reflect mechanical properties instead of geometric features, is
computationally expensive, and learning algorithms can be unstable. As an alternative, it has been shown that through
the smart design of neural networks and rational selection of the loss functions, it is possible to find a suitable
mapping between properties and structure without learning it from scratch [49,50]. In this manuscript, we propose
an approach that enables us to efficiently predict the mechanical response of reentrant-hexagonal metamaterials
based on curved Bezier beams and, more importantly, efficiently search for a wide variety of geometries that will
suffice the specific requirements.

2. Unit cell design

2.1. Classical hexagonal and reentrant lattices

A honeycomb structure is a well-known two-dimensional cellular lattice based on the six-sided hexagonal
polygon unit cells with identical strut length and internal angles. Any change in the lengths and angles of the
honeycomb structure can lead to a new structure with different mechanical properties. Fig. 1a and 1b illustrate the
resultant classical hexagonal and reentrant unit cells by altering the angle of inclined struts (BC) from positive to
negative values of θ , which yield a wide range of different structures with positive and negative Poisson’s ratios.
In this section, a general solution for hexagonal/reentrant structures that consist of various independent lengths and
cross sections for beams is derived.

Due to the two symmetrical planes of the unit cell, such as xz (sym1) and yz (sym2), the whole deformation

f the unit cell under tension or compression in x and y directions could be defined by four individual degrees

3
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of freedoms (qi , i = 1, 2, 3, 4) at A, B and C vertices (Fig. 1a). Because of the symmetrical deformation of
unit cell under loading in x and y directions, the similar degrees of freedom are defined at the other vertices (A′,
B ′, C ′, C ′′ and C ′′′). According to the equivalency of these degrees of freedom at their corresponding vertices, the
deformation of only 1/4 of the unit cell can represent its overall behavior. In addition, the equivalency of the degrees
of freedom at the respective vertices captures the periodicity of the unit cell in x and y directions. By considering
small deflections and linear material behavior, the overall deformation of the unit cell can be considered as the
superposition of separate deformations caused by applying individual loads at each degree of freedom. Therefore,
the superposition principle could be implemented for obtaining the system of equations for the unit cell. The system
of equilibrium equations for the structure could be written as⎧⎪⎪⎨⎪⎪⎩

Q1
Q2
Q3
Q4

⎫⎪⎪⎬⎪⎪⎭ =

⎛⎜⎜⎝
k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44

⎞⎟⎟⎠
⎧⎪⎪⎨⎪⎪⎩

q1
q2
q3
q4

⎫⎪⎪⎬⎪⎪⎭ (2.1)

In this equation, {Q} is the force vector which is composed of the external forces acting on the unit cell, [K ] is
the stiffness matrix of the system and {q} is the displacement vector corresponding to each degree of freedom. To
calculate the elements of the stiffness matrix of the unit cell based on the superposition method, unit displacements
are applied individually to each degree of freedom (qi = 1, i = 1, 2, 3, 4) by constraining all the other degrees of
freedom (q j = 0, j ̸= i). Due to the symmetrical planes of the hexagonal unit cells, there is no rotational degree
of freedom at the joints, which means that the struts of the unit cells are either under elongation (or contraction)
or bending (without rotation) at the joints. Therefore, the deformation of an arbitrary strut within the unit cell can
be illustrated as shown in Fig. 1c. The general deformation δ at the free end of the beam is decomposed into an
axial (u) and a lateral (v) deformation, which yields the corresponding reaction forces (Fa , Ft ) at the fixed end of
the beam. Based on the Euler–Bernoulli beam theory, the axial and lateral stiffness of the beam can be derived as
Si =

Ai E
li

and Ti =
12E Ii

l3
i

respectively.
By solving the force equilibrium equations for each beam of the unit cell according to the reaction forces resulting

rom individual degrees of freedom, the stiffness matrix of the unit cell is extracted as follows

K =

⎛⎜⎜⎜⎜⎝
2S1 −2S1 0 0

−2S1 4S2 sin2(θ ) + 2S1 + 4T2 cos2(θ ) −4S2 sin2(θ ) − 4T2 cos2(θ ) sin(θ ) cos(θ ) (4S2 − 4T2)

0 −4S2 sin2(θ ) − 4T2 cos2(θ ) 4S2 sin2(θ ) + 4S3 + 4T2 cos2(θ ) sin(θ) cos(θ ) (4T2 − 4S2)

0 sin(θ ) cos(θ ) (4S2 − 4T2) sin(θ ) cos(θ ) (4T2 − 4S2) 4S2 cos2(θ ) + 4T2 sin2(θ )

⎞⎟⎟⎟⎟⎠ (2.2)

After deriving the stiffness matrix of the unit cell, the system of equations (Eq. (2.1)) can be solved for
ifferent loading conditions. To obtain the mechanical properties of the hexagonal structure in y direction, the
orresponding loading condition is applied to the unit cell, and the system of equations is solved to find the resultant
eformations at the defined degrees of freedom. By applying Q4 = 1 (Q1,2,3 = 0), the Poisson’s ratio in y direction
:= νyx = −εx/εy can be found via components of K (2.2). The strains in x and y directions (ϵx and ϵy) are

alculated using the results of q1 and q4 for their corresponding loading condition as follow:⎧⎪⎨⎪⎩
ϵx =

q1

Wuc

ϵy =
q4

Huc

(2.3)

where the Huc and Wuc stand for the total height and width of the unit cell and can be calculated as Huc = 2l2 cos(θ )
and Wuc = l2 sin(θ ) + 2l1 respectively.

By solving the system of equations ({Q} = [K ]{q}) for loading condition of Q4 = 1, Q1,2,3 = 0 and calculating
the {q} vector, the final relationship for Poisson’s ratio of the unit cell is written as follows:

νyx = −
q1

q4
.

Huc

Wuc
= −

2l2 sin(θ ) cos2(θ ) (T2 − S2)

S2T2 (l2 sin(θ ) + 2l1)

(
cos2(θ )

S
+

sin2(θ )
T

) (2.4)
2 2

4
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Fig. 2. A quadratic (p = 2) B-spline build from the six control points (ci , i = 1, . . . , 6) and the knot vector k = (0, 0, 0, 0.2, 0.5, 0.8, 1, 1, 1).

The aforementioned results are used to calculate the Poisson’s ratio of hexagonal structures by using positive
alues of θ , or reentrant structures by substitution of negative values of θ . The Poisson’s ratio clearly depends on
oth the axial and lateral stiffness of the horizontal and inclined beams. Varying these stiffnesses by substituting
he classical straight beams with curved beams, a huge design variability can be achieved.

.2. Bezier curve theory

To replace straight beams with complex curved elements, a suitable representation of these elements is needed.
-splines are able to provide smooth parametric descriptions of such elements. By definition, these B-spline curves

B(t) are constructed from a combination of so-called control points and several basis functions of order p [51].
ne such B-spline and the corresponding control points ci ∈ Rd are shown in Fig. 2. Each point t ∈ [0, 1] along

he curve is given by a weighted sum of the control points, where the weights are defined by the basis functions
Ni,p : [0, 1] → [0, 1] as

B(t) =

n∑
i=1

Ni,p(t)ci (2.5)

This method assures that some parts of the curve are more dependent on certain control points than others, which
ets more evident when looking at the way the basis functions themselves are constructed via recursion. First, the
urve is partitioned into smaller intervals, divided by knots ki , i = 1, . . . , n + p + 1, ki ≤ ki+1. Each zero-order
asis (p = 0) function is defined as

Ni,0(t) =

{
1 if ki < t < ki+1

0 otherwise
(2.6)

As one can see, the basis functions of order 0 are not smooth. The recursive step then performs a smoothing
peration on each base function using one neighboring function, giving continuous curves

Ni,p(t) =
t − ki

ki+p − ki
Ni,p−1(t) +

ki+p+1 − t
ki+p+1 − ki+p

Ni+1,p−1(t) (2.7)

As can be seen, the number of control points contributing to each point of the curve increases with the order.
ig. 2 shows a quadratic spline (p = 2) where this number is usually three. However, the start and end points of

he curve each depend only on a single control point. For this to occur, it is necessary to have p + 1 knots with
i = k0 and ki = kn+p+1, respectively. In this case, Eq. (2.5) yields B(0) = c1 and B(1) = cn . To generate the

-splines for the unit cells, we used the Python-package Splipy [52].

5
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t

Fig. 3. A B-spline, the corresponding representative unit cell and a resulting system comprised of 8 × 5 representative unit cells.

2.3. Generated metamaterials

The unit cells of the metamaterials considered here are inspired by hexagonal and reentrant honeycomb structures.
As can be seen in Fig. 3, the horizontal struts are connected by a curved quadratic B-spline or its mirrored equivalent
instead of straight beams. Due to the periodicity, there are several ways to pick a unit cell for the same lattice; the
unit cell shown in Fig. 3 is just one of them. Like the one shown in Fig. 2, the B-spline connecting the horizontal
struts is given by six control points. As the unit cell is univocally defined by the B-spline, these points can be
further used to represent the whole unit cell. For simplification, control points were placed equidistantly along the
y-axis, leaving only the coordinates along the x-axis as design variables. Additionally, the length of the horizontal
struts (AB in Fig. 3) was kept the same for all unit cells, leaving them only dependent on the relative position of
the control points. The first control point was always selected as (0,0). Therefore, each structure is given by a set
of five independent parameters — the vertical values ci,y of the control points ci , i = 2, . . . , 6 (see Fig. 2). Using
hese parameters as design variables, two different datasets were created:

• Set 1 consists of pairs (xi , yi ) of unit cells based on B-splines with a fixed endpoint (xi ) and the corresponding
Poisson’s ratio (yi ). Fixing the end results in unit cells corresponding to variations of a single reentrant unit
cell design with B ′ B = 0.5 C ′C . For this dataset, the horizontal struts always have the same relative position,
leaving the variation of the B-splines as the only source of properties differences.

• Set 2 consists of pairs (xi , yi ) of unit cells based on B-splines with free endpoints (xi ) and the corresponding
Poisson’s ratio (yi ). Free ends result in a greater diversity of unit cells. As can be seen in Fig. 4, varying
the x-coordinate of the end of the unit cell can change its underlying geometry from more reentrant-like to
hexagonal (see the dashed red lines in Fig. 4b).

To obtain the Poisson’s ratio for the structures in both datasets, numerical simulations were performed in the
finite element (FE) package COMSOL 5.4a via the LiveLink interface. For these simulations, the B-splines were
discretized into 150 beam elements. Periodicity was prescribed by matching the displacements and angles on the
boundaries of the unit cell. The Poisson’s ratio was found as the ratio between lateral expansion vs applied tensile
strain (ν = −εx/εy). Note that the considered metamaterials are not isotropic, therefore the value of this Poisson’s
ratio is not bounded by 0.5, as in case of isotropic materials. To verify the simulation approach, results for unit cells
with straight beams were compared to theoretical values of νyx obtained via Eq. (2.4). It was found that simulations
match the theory well for small deformations, as shown in Fig. 5.

3. ML implementation for forward (structure–property) problem

The Neural Network (NN) model F depicted in Fig. 6a is introduced as a surrogate model for the FE
simulation. By training on structure–property pairs, the neural network learns to emulate the simulation in
predicting the Poisson’s ratio of a structure and thus to solve the forward problem. The surrogate model allows
efficient computation of the shape derivatives necessary for training the inverse model through the backpropagation

algorithm [53].

6
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Fig. 4. Unit cell examples from Set 1 (a) and Set 2 (b). While the dimensions of the unit cells from Set 1 are constant, cells from Set 2
can resemble both reentrant or hexagonal structures. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 5. The Poisson’s ratios (ν) of different unit cells with straight beams (as shown in Fig. 1a–b) depending on angle θ (a) and the ratio
etween B ′ B and C ′C (b) respectively. The black curve corresponds to Eq. (2.4), while the others were obtained through simulations in
OMSOL with varying applied strain (ε). Note, that simulations match the theory well, especially for small strain.

Information about the structure is passed to the neural network as the five constitutive parameters of the
orresponding B-spline. The network consists of four fully connected layers, including the output layer, where each
idden layer is followed by a ReLU activation function. To learn how to predict the Poisson’s ratio, the network
as trained using the Adam optimizer [54] and a Mean Squared Error objective function. Layer normalization [55]
as used to reduce training time. For both datasets, the Poisson’s ratios and the B-spline parameters were rescaled

o the range [0,1]. For each of the two datasets, a separate instance of the network F was trained.

.1. Set 1

Of the 25,000 examples in Set 1, 90% were used for training, while the remaining 10% were used as test set.
ig. 7a shows the comparison between the Poisson’s ratios obtained by the FEA and the forward model F for
oth the train and test parts of Set 1. Predictions of the network are very close to simulation results, and a good
eneralization can be observed with data from train and test sets showing similar distributions (R2

= 0.99984).

.2. Set 2

Set 2 consists of 25,000 data points, of which again 90% were used for training and 10% for testing. Fig. 7b
hows the comparison between the Poisson’s ratio calculated through FEA and the value predicted by the network.

s for the optimal model, the predicted value should match the one from simulation, so ideally the plot would yield

7
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Fig. 6. The forward NN model F (a) and the inverse NN model G (b). The different layers are color coded. Poisson’s ratios are shown
in green, B-splines in black and hidden layers in blue. The hidden layers consist of fully connected (FC), layer normalization (LN) layers
in combination with LeakyReLU (LU) and Sigmoid (Sig) activation functions. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 7. Comparison between the Poisson’s ratios obtained by FEA (νs ) and the forward NN model F (νn) for training and testing data from
Set 1 (a) and Set 2 (b).

line with a unit slope. Similar to Set 1 the model generalizes properly, with test set performance equivalent to the
raining set (R2

= 0.99976).
The obtained models show an extremely good prediction of the mechanical properties even with a relatively

mall number of samples. However, for both datasets, multiple unit cells can yield the same Poisson’s ratio. This
auses the inverse problem to be ill-posed, as multiple solutions exist for a single input.

. ML implementation for inverse (property–structure) problem

Predicting a curve that fits given properties is far more challenging than solving the forward problem described
n the previous section. It is not possible to simply reverse F and train this network on property/structure pairs as
here are multiple curves that fit the same property. Instead, the reversed network needs to be modified to address
he following three major challenges, yielding a complex architecture consisting of interconnected inverse G (see
ig. 6b) and forward F (see Fig. 6a) models.

(1) Neural networks always produce the same output for the same input; they are deterministic. This also means
hat multiple possible structures fitting the same input properties disturb the training process preventing the network
rom learning. A common approach to avoid this is to utilize the pretrained surrogate model F [49]. Using F , it

s possible to directly compare the target properties to the ones of the generated structure and create a mapping

8
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Fig. 8. Schematic of the inverse design system. The generative model G receives a target Poisson’s ratio and guide curve. Based on these
t generates a unit cells defined by a B-spline. This B-spline is then fed to the forward model F which estimates the Poisson’s ratio of the
enerated structure so it can be compared to the target one for training.

ithout multiple solutions. This allows further to backpropagate corresponding property-based loss through F to
he generator network G.

(2) While the utilization of F allows training of G, each input still yields only one output, meaning that only one
tructure can be generated for each distinct property input. To allow multiple solutions, additional inputs need to be
mployed, providing a criterion for choosing from the possible solutions. For this, the additional inputs have to be
onnected to the generated structure, or G will simply learn to ignore them. Such a connection can be learned as
ell (for example, by training a Generative Adversarial Network [46]), which requires a lot of additional effort but

llows the additional inputs to be completely random (i.e., noise). However, here the additional input is provided
n the form of a so-called guide curve. A guide curve is an arbitrarily chosen structure that does not have to fit the
arget properties. The generator G is trained to generate the structure fitting the target properties that most closely
esembles the guide curve. This way, different structures are generated for different guide curves, and it is possible
o express a preference for a certain shape. Introducing the guide curve and combining F and G yields the system
hown in Fig. 8.

(3) As neural networks are usually not able to make accurate predictions outside of the range of their training
ata, it is necessary to limit generated structures to a sensible range when fitting the inverse model G. Here an
dditional term was added to the loss function, that penalizes solutions which differ much from a straight line
etween start and endpoint.

Each of these challenges is addressed by a distinct term of the following loss function:

min
G

O(F ,G) =
1
n

n∑
i=1

(F(G(xi , yi )) − yi )2

  
(1)

+α
1
n

n∑
i=1

(G(xi , yi ) − xi )2

  
(2)

+
1
n

n∑
i=1

nc∑
j=1

1d j >K d j  
(3)

,

(4.1)

where n is the number of samples, nc the number of control points, d j = (G(xi ) j −
j−1

nc−1 cnc )2 the deviation of the
-spline from a straight line and K a threshold for penalizing this deviation.

In Eq. (4.1) the parameter α controls the trade-off between matching the target properties or matching the guide
urve (see the left side of Fig. 8). For training the inverse model G, both target properties and guide curve were
ampled from random uniform distributions. Note that the guide curve is an arbitrary curve that might be not
epresented in the dataset. The network shown in Fig. 6b was trained separately on Set 1 and Set 2, each time
ombined with the respective forward model. For Set 1, the endpoints of the guide curves as well as the ones of

he generated B-splines were fixed. Similar to training the forward model, Adam was used as an optimizer.

9
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Fig. 9. Comparison between the target Poisson’s ratios (νt ) and the Poisson’s ratios of the corresponding structures generated by G (νg) for
et 1 (a) and Set 2 (b).

Fig. 9 shows the comparison between target and resulting mechanical properties (Poisson’s ratio) for randomly
icked guide curves. The target properties were chosen randomly, while the resulting Poisson’s ratios of the
orresponding generated curves were obtained through FEA. A good fitting (R2

= 0.99785 for Set 1 and
R2

= 0.99839 for Set 2) was obtained, although G was not directly trained on FEA data, but F instead. As expected,
the inverse model trained on Set 2 can design unit cells with a greater variety of properties than the model trained

n Set 1.
Since G has two inputs (target Poisson’s ratio and guide curve), we can demonstrate the performance of the

nverse network in two different ways. Fig. 10a–b show the variety of curves generated for the same guide curve
ith different target Poisson’s ratio. It can be observed that a continuous change in Poisson’s ratio usually leads

o quite smooth transformations in the resulting curves. However, for some values of Poisson’s ratio, one cannot
aintain the similarity with the guide curve. This is in part due to the additional constraint on the “width” of the

urve (see the last term in Eq. (4.1)).
Similarly, Fig. 10c–d show the variety of the generated curves with the same properties, but based on the different

uide curves. It can be observed that the variety of the admissible generated curves with the same Poisson’s ratio
s immense. Note that the model trained on Set 2 shows a wider variety of curves and Poisson’s ratios as compared
o the model trained on Set 1. This is expected behavior since geometrically Set 1 is the subset of Set 2, which
ncludes unit cells based on hexagonal elements (θ > 0) besides of reentrant ones.

. Experiments

To validate the finite element simulation, mechanical tests were performed on ten different geometries. While
ine out of these ten specimens were based on unit cells generated by the inverse model G for Set 1, the tenth sample
as based on the corresponding reentrant unit cell with straight beams for reference. These specimens (see Fig. 11a)

onsisted of 5 × 5 unit cells (25 mm×18.75 mm×5 mm each) were additively manufactured from Ninjaflex
®

TPU
lament by a Creality CR-10 3D-Printer. The tensile behavior of the samples was tested on a Zwick&Roell 10kN
niversal testing machine. Since the purpose of these tests was to verify how well the real specimens fit the target
oisson’s ratio, specimens included structures with both auxetic and non-auxetic behavior. To minimize viscoelastic
ffects and assure conditions as close to the simulations as possible, samples were subjected to a tensile load with
slow rate of 20 mm/min. The resulting Poisson’s ratio was determined as quotient of lateral and applied strain at

% total strain. The measurements necessary for this calculation were taken by analyzing captured videos of the

xperiments in the software Fiji [56].
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Fig. 10. Generated unit cells and corresponding B-splines for variation of target Poisson’s ratio with the same guide curve for Set 1 (a) and
Set 2 (b). Similarly, the generated unit cells and corresponding B-splines for variation of the guide curve while keeping the target Poisson’s
ratio the same for Set 1 (c) and Set 2 (d).

Fig. 11. An exemplary test specimen (a). Comparison between the target Poisson’s ratios (νt ) and the Poisson’s ratios derived from the
experiments (νe) (b).
11
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The test results shown in Fig. 11b display a clear correlation between target and exhibited behavior. This means
hat despite being only trained on synthetic data, our model is able to make reliable predictions in a real world
etting.

. Conclusion

In this work, we introduced a class of reentrant-hexagonal metamaterials based on curved Bezier beams and
corresponding deep learning framework to generate unit cells with desired mechanical properties. Using Bezier

urves instead of straight beams allowed us to obtain a variety of different properties while keeping the dimensions
f the corresponding unit cells constant. At the same time, it yields a large number of possible unit cells to fit given
roperties. We used a guide curve instead of noise to create a one-on-one mapping for this inverse problem. This
pproach enables us not only to generate several unit cells with the same properties, but also to express a preference
or a specific shape.

As the proposed forward neural network model can reliably predict mechanical properties of metamaterials
R2 > 0.999), the corresponding inverse model was able to accurately generate unit cells fitting specific properties
R2 > 0.997). Experiments demonstrated that this ability extends to a real world setting, even though both models
ere trained on simulations. Furthermore, both models are computationally efficient, allowing us to generate a large
umber of unit cells in a short amount of time (around 20,000 unit cells per second).
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