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The paper describes a fault-tolerant design of a special
two-dimensional beam lattice. The morphology of
such lattices was suggested in the theoretical papers
(Cherkaev and Ryvkin 2019 Arch. Appl. Mech. 89,
485–501; Cherkaev and Ryvkin 2019 Arch. Appl. Mech.
89, 503–519), where its superior properties were
found numerically. The proposed design consists
of beam elements with two different thicknesses;
the lattice is macro-isotropic and stretch dominated.
Here, we experimentally verify the fault-tolerant
properties of these lattices. The specimens were three-
dimensional-printed from the VeroWhite elastoplastic
material. The lattice is subjected to uniaxial tensile
loading. Due to its morphology, the failed beams are
evenly distributed in the lattice at the initial stage
of damage; at this stage, the material remains intact,
preserves its bearing ability, and supports relatively
high strains before the final failure. At the initial
phase of damage, the thinner beams buckle; then
another group of separated thin beams plastically
yield and rupture. The fatal macro-crack propagates
after the distributed damage reaches a critical level.
This initial distributed damage stage allows for a
better energy absorption rate before the catastrophic
failure of the structure. The experimental results
are supported by simulations which confirm that
the proposed fault-tolerant material possesses
excellent energy absorption properties thanks
to the distributed damage stage phenomenon.
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This article is part of the theme issue ‘Modelling of dynamic phenomena and localization in
structured media (part 2)’.

1. Introduction
The majority of engineering materials fail due to cracking. A catastrophic macro-crack propagates
through a homogeneous specimen subjected to uniform tensile loading. In both cases of brittle
as well as ductile materials, the crack propagates due to strain localization. We design and
experimentally test a fault-tolerant material that resists crack propagation: the damage develops
slowly, and the strain localization stage is preceded by a phase where damage is evenly
distributed in the material volume. Consequently, the specimen remains intact while experiencing
large irreversible deformations and large energy dissipation. The prominent examples of natural
fault-tolerant materials with the distributed damage stage are bone tissues [1,2] and nacre [3]. The
fault tolerance response in these materials is thanks to their specific microstructure. They possess
sacrificial links [4,5] or soft interfaces [6–8], which fail first, while the material remains intact at
a macro scale. Similarly, some polymer materials possess distributed sacrificial links, failure of
which does not destroy the material’s integrity [9].

Fault (damage) tolerant materials are of significant interest to modern engineering practices
[10]. Non-localized distributed damage stage materials are especially beneficial because they
allow monitoring of the structural health of the material and detecting damage before fatal
collapse [11].

A one-dimensional structural illustration of the idea of sacrificial links was presented in [12],
where after partial damage of sacrificial rods, the loading was carried by the initially inactive
curved rods called ‘waiting links’. Dynamics and waves of damage in a chain with sacrificial
links are described in [13,14]. Activation of these rods in a partially damaged structure increases
the local stiffness and leads to distributed damage and damage waves. The dynamics of damage
was numerically investigated in the paper [15]. Rational design of the elements of such structures
against waves of damage was investigated in [16]. A helicoidal structure with increasing energy
absorption was suggested in [17]. The designs of impact-protecting structures with waiting links
were described in [18,19].

The waiting links are not initially activated, which reduces the stiffness of an undamaged
structure. In [20,21], another approach is used. All beams in the lattice are initially active and
resist the load, but some of them are broken if the external load exceeds a threshold, which
creates distributed patterns of localized damage. In [21], the design of a two-dimensional material
with the microstructure providing the fault-tolerant response for a biaxial tension was suggested
and numerically tested. The superior fracture toughness was achieved by redistributing the
material between links, resulting in the periodic heterogeneous beam lattice (bi-lattice) consisting
of beams with different thicknesses. The resulting uneven stresses in neighbouring elements lead
to many isolated faults that do not grow into cracks during the first stage of damage but consume
significant impact energy.

The primary goal of the present work is to get an experimental verification of the theoretical
results obtained in [21]. The experiment is performed for slightly different boundary conditions
than in that theoretical paper, and the parent material is not brittle, but the arrangement of thin
sacrificial elements is the same. The expected result, fault tolerance of the specimen, is observed in
the experiment. This result provides evidence that the design concept developed in [21] is robust;
one might expect this because the concept is geometrical and could apply to various materials.

2. The theoretical result for the bi-axial tension of brittle lattice
The design of a heterogeneous brittle fault-tolerant lattice, which was found in [21] is presented
in figure 1. This lattice (bi-lattice) is a superposition of two basic lattices (figure 1c) with different
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Figure 1. Heterogeneous fault-tolerant beam lattice (a), its repetitive cell (b). The lattice structure is a combination of rhombille
and hexagonal lattices (c). (Online version in colour.)

thicknesses of the beams. The bi-lattice is isotropic due to the elastic symmetry of the periodicity
cell, and its effective Young modulus and Poisson ratio are analytically calculated (see appendix).
Although both rhombille and hexagonal lattices are bending dominated, their combination in the
bi-lattice is stretch dominated; and, therefore, its stiffness is an order of magnitude higher than
the stiffness of each of the constituents. Nevertheless, the stiffness of bi-lattice is smaller than
the stiffness of a regular triangular lattice, but its fault tolerance is much higher. In the uniform
triangular lattice, the failure of one of the links initiates the failure of its neighbours, and a straight
linear crack is formed [20,22]. The heterogeneous bi-lattice is fault tolerant because its damage is
distributed through the volume; the local damage starts and is arrested; then it starts in another
place, and so on.

The parameters of the bi-lattice are as follows: the rhombille lattice consists of beams with
thickness Tr called r-beams, and a hexagonal lattice composed of beams with thickness Th called
h-beams. We found by simulation that in better designs Th < Tr. The ratio of these thicknesses is
called τ , (τ = Th/Tr < 1). The relative density of cellular lattice material ρ is defined as the ratio of
parent material volume in the repetitive periodic cell to the total cell volume. For the considered
bi-lattice

ρ = 2√
3

(th + 2tr), (2.1)

where th = Th/l and tr = Tr/l are the non-dimensional beam thicknesses normalized by the
elements length l. The lattice was subjected to elongation in one direction; the average strain
in the perpendicular direction was fixed. These conditions correspond to the bi-axial tension.

Two failure criteria were considered, the maximal stress criterion and the rheological criterion,
which take into account the prehistories of previous loadings that may have weakened the
beam. Initially, one beam was removed; at each of the next steps, another beam was removed.
The maximum stress criterion requires removing the beam with the highest skin stress σs. The
rheological criterion assumes that all overloaded beams lose some of their strength; the reduced
critical stress of these beams is recalculated after each step and the beam with the highest reduced
stress is removed. The value of the maximal skin stress in each beam is calculated as a sum of



4

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190107

................................................................

Figure 2. Damage pattern for the brittle fault-tolerant bi-lattice. The broken rods are shown in red. (Online version in colour.)

the bending stress caused by a maximal bending moment M, which is approached at one of its
extremities, and the stress caused by an axial force N

σs =
∣∣∣∣
MT
2I

∣∣∣∣ + N
A

, (2.2)

where T is the thickness of the beam cross section, A is the cross-section area and I its moment of
inertia.

The damage propagation in the bi-lattice of relative density ρ = 0.1155 with different beam
thickness ratios τ was numerically simulated, and it was found that the most pronounced fault
tolerance effect takes place for τ = 0.25. The pattern of distributed damage for both failure criteria
after 40 consecutive breakages was the same; it is presented in figure 2.

3. The experiment

(a) Choice of the parameters
The analysis of damage propagation in the heterogeneous lattice subjected to a uniaxial tension
is carried out in the same way as in [21] for other boundary conditions. A rectangular lattice
domain includes 12 × 12 = 144 repetitive cells; their morphology is shown in figure 1b. Beam
elements of length l are rigidly connected at the nodal points, each node has two translational
and one rotational degree of freedom. The elastic response of an element in the local beam related
coordinate system is described by the stiffness matrix Ke[6 × 6], e.g. [23]

Ke = EI
l3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β 0 0 −β 0 0
0 12 6l 0 −12 6l
0 6l 4l2 0 −6l 2l2

−β 0 0 β 0 0
0 −12 −6l 0 12 −6l
0 6l 4l2 0 −6l 4l2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (3.1)

where Ep is the parent material Young modulus and β = Al2/I is the square of beam slenderness
ratio. The analysis of the rectangular domain was carried out by the use of the representative
cell method [24]. This method is based on the discrete Fourier transform, it allows for replacing
the analysis of a whole domain by the analysis of the single repetitive cell consisting of 19
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Figure 3. Uniaxial tension of fault-tolerant bi-lattice. Loading scheme (a) and maximal stress distribution after breakage of 10
beams denoted by red (b). Dashed thin red line denotes the initial flaw. (Online version in colour.)

rods (figure 1b). The stiffness matrix of the single cell is obtained by the standard methods of
structural mechanics (e.g. [23]). The representative cell method uses the boundary conditions
in the form of jumps in the displacements and tractions between the nodes at the opposite
sides of the rectangular domain. The considered state of uniaxial tension in the horizontal
direction is obtained by assigning the jumps in the displacements normal to the respective domain
boundaries. Namely, the jump in the x-direction corresponds to the elongation �x and the jump
in the y-direction corresponds to the contraction �y = −ν∗�x, where ν∗ is the effective Poisson
ratio of the heterogeneous lattice. The loading scheme is illustrated in figure 3a. The damage
propagation is modelled by sequentially removing the broken beams following the maximal stress
criterion by the use of (2.2) as is described in the previous section.

The thicknesses ratio parameter τ varies in the interval (0, 1). For a sufficiently small τ , thin
h-beams will fail first; however, if these beams are too thin, they do not significantly improve the
overall elastic response of a remaining compliant rhombille honeycomb. The opposite case τ = 1
corresponds to the triangular lattice with uniform elements, which has maximal stiffness but is
not fault tolerant. The design aims to compromise these properties. Therefore, the design goal is
to find a fault-tolerant lattice with a large ratio τ .

The numerical experiments have shown that for the bi-lattice material with relative density
ρ = 0.231, the value is τ = 1/3. The effective elastic properties for this layout are calculated by the
formulae derived in [21] (see appendix)

ν∗ = 0.441

and
E∗
Ep

= 0.0643

⎫⎪⎬
⎪⎭

, (3.2)

where Ep is the Young modulus of the parent material. Note that the lattice (τ = 1) of maximal
stiffness for the same density has the Young modulus E∗/Ep = 0.0769, i.e. the reduction of the
stiffness is only 16%. The maximal stress distribution in the lattice rods after several initial
breaks is illustrated in figure 3b. The colour of each element represents its maximal stress,
which is evaluated by (2.2); the dashed thin red line denotes the initially introduced flaw. The
vertical rods perpendicular to the loading direction are subjected to a non-uniform contraction,
where the h-rods are compressed more than the r-ones; the consequence is discussed in the next
section.
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Figure 4. Uniaxial tension test for VeroWhite material with the loading/unloading. The colours of the curves denote several
tests. (Online version in colour.)

(b) Materials and scheme of experiment
We prepared the heterogeneous lattice specimen from a elastic–plastic polymer material rather
than from the brittle one that was considered in the theoretical analysis in [21] because this
polymer material was widely available. The fault tolerance of the theoretical design is mainly
due to the special geometry of the lattice and the elastic response of parent material. Therefore, it
was plausible to hypothesize that the special response of the lattice is observed for a non-brittle
material as well. The results presented below show that this hypothesis is validated and our
concept of the design is robust and applicable to various types of materials.

The heterogeneous lattice structures were produced by a Polyjet 3D printer using the Stratasys
Objet Connex 260 machine. The commercially available stiff polymeric material VeroWhite
was selected for the fabrication of the specimens from the relatively broad spectrum of the
printable materials [25]. Several uniaxial tests with intermediate unloading were performed on
the homogeneous specimens with dimensions corresponding to ASTM D638 standard (Type IV)
to verify the elastic properties of this parent material. The parent material demonstrates elastic–
plastic mechanical behaviour with pronounced plastic elongation after reaching yield stress,
as shown in figure 4. Intermediate unloading–loading cycles reveal slight hysteresis caused by
relatively weak viscoelastic properties of the material.

The experimentally verified elastic–plastic response is characterized by the following data:
Young modulus Ep = 1650 MPa, Poisson ratio νp = 0.42 and yield stress σpy = 50 MPa. The strain
εpy corresponding to the limit of the linear elastic response (figure 4) is

εpy = σpy

Ep
= 0.0303. (3.3)

The scheme of the experimental set-up is presented in figure 5. The rectangular lattice sample
has length Lx = 217 mm in the loading direction, width Ly = 157 mm and out-of-plane thickness
lo = 1.5 mm. The structural parameters for the relative density ρ = 0.231 are chosen to fit the
results described in the previous section: l = 10.5 mm, Th = 0.94 mm and Tr = 0.3 mm (figure 1b).
The opposite vertical boundaries of the specimen are fixed at the moving supports, and an
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Figure 5. Experimental sample (a) and the loading scheme (b). (Online version in colour.)
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Figure 6. The stages of damage: buckling of vertical r-rods (a) and rupture of the oblique rods (b). (Online version in colour.)

elongation test is carried out for quasi-static conditions with the speed of support 5 mm min−1,
which corresponds to the strain rate 3.8 × 10−4 s−1.

The material demonstrates the expected fault tolerance response with distributed damage
before a macro-crack emerges. Two visually observed sequential stages with different types of
damage are shown in figure 6. Red circles indicate the location of broken elements. The next
section discusses the obtained results.

4. Results and discussion

(a) Distributed buckling and yielding
The nominal stress–strain diagram of the experiment is presented in figure 7. The results of two
tests with and without intermediate loading–unloading are shown. For the small strains, the
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Figure 7. Stress–strain diagram of uniaxial tension in the fault-tolerant bi-lattice with and without unloading. (Online version
in colour.)

lattice material is linearly elastic, and its Young modulus, which is the inclination angle of the
stress–strain graph, is 0.108 GPa. This value is very close to the theoretical result calculated by
(3.2) E∗ = 0.106 GPa.

As the strain reaches a threshold1

ε̄1
x = 0.004 (4.1)

a material softening occurs, shown as a kink-like transition to a straight stress–strain dependence
with the smaller angle. This phenomenon is presented in figure 8, which is the zoomed in part
of figure 7. This behaviour is due to the buckling of the thin h-rods perpendicular to the loading
direction; these buckled rods will be denoted as hp-rods (figures 5 and 6a). The unloading curve in
figure 8 shows that the material response contains an irreversible deformation component. Hence,
the elastic–plastic buckling is also considered distributed damage.

The value ε̄1
x is theoretically estimated. The numerical simulation shows that for the considered

parameters the axial shortening strain in the hp-rods has the same absolute value as the overall
elongation strain

εhp = −ε̄x. (4.2)

The critical value εhp is determined by the Euler buckling force for a beam with the clamped–
clamped boundary conditions

PE = 4π2EpI

l2
. (4.3)

If the beam’s cross section is rectangular, the corresponding negative buckling axial strain is given
by the formula

ε
hp
E = PE

EA
= π2

3
t2
h. (4.4)

The buckling takes place when εhp = ε
hp
E ; in view of (4.2), the theoretical value of ε̄1

x is 0.0027.
A notable discrepancy of this value from the experimental data (4.1) can be attributed to the
difference in boundary conditions. Theoretical estimation is obtained for the pure periodic

1The bar hereafter is used to denote the average strains in the specimen obtained by the division of elongation to the initial
length.
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Figure 8. Zoomed in part of the bi-lattice stress–strain diagram for small strains. (Online version in colour.)

displacements field, while in the experiment the effective vertical contraction is diminished
because the vertical displacements at the boundaries of the specimen parallel to the y-axis are
clamped.

Additional experiments are conducted on the homogeneous triangular lattice with uniform
elements (Th = Tr = T) under uniaxial tension. In contrast to the heterogeneous bi-lattice,
the buckling phenomenon was not observed. The difference in response is explained as follows:
the average transverse contraction ε̄y = −ν∗ε̄x for the heterogeneous lattice is higher than for the
homogeneous one due to the larger effective Poisson ratio [21]. In addition, this contraction in
the heterogeneous lattice is distributed non-uniformly with higher strains at the thin hp-rods
(figure 3b):

ε̄y = 1
3 (εhp + 2εrp). (4.5)

Here, εrp is the deformation of r-rods perpendicular to the loading direction. Since for the thicker
rp-rods εrp < εhp, from (4.5) it follows that εhp > ε̄y.

A plateau in the stress–strain diagram follows the linear elastic response with buckled
perpendicular rods. Such a response is similar to the response of the solid parent material
(figure 4); however, the underlying physical mechanism is different. For the solid material, the
plastic deformation is localized in a specific material region (the neck) and is characterized by
the significant stress drop at the beginning of the plateau. In the lattice, the main reason for the
plateau formation is also plasticity; however, the resultant overall plastic response is a result of
distributed plastic deformation followed by the rupture of multiple separated oblique h-rods (i.e.
ho-rods), which explains the saw-like shape of the graph. The visual observation shows that the
rupture of ho-rods starts at an average deformation of about ε̄x = 0.042, and the specimen failure
accompanied by the damage localization and macro-crack appearance takes place for an average
strain of 0.07.

The obtained experimental results are in agreement with the simulation. The relation between
the axial strain of ho-rods and the overall specimen deformation is computed as εho = 1.16ε̄x. So,
by (3.3), the theoretical value of the deformation corresponding to the yielding of the ho-rods is
ε̄

(2)
x = 0.0303/1.16 = 0.0261, which is close to the beginning of the plateau region in the experiment.

The value ε̄3
x corresponding to the yielding of thick oblique r-rods (ro-rods) is significantly higher;

a similar argument shows that it is about 0.061, which is consistent with the experimental data.
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This description explains how the damage of the separated oblique ho-rods is evenly
distributed in the material volume. The critical feature of the partially damaged material is that
it remains intact and preserves its bearing ability and its stiffness is close to the stiffness in the
elastic stage before the damage starts, as is seen from the loading–unloading curves.

A snapshot of the final stage of the evenly distributed damage in the specimen before the
macro-crack appears is presented in figure 6b, where red points indicate the ruptured rods.

(b) Comparison with homogeneous lattices
To highlight the advantages of the heterogeneous bi-lattice, we compare its stress–strain diagram
with the diagrams of two homogeneous lattices with uniform elements.

− The first compared lattice is triangular with the same relative density, ρ = 0.231. The
thickness of its elements in accordance with (2.1) is Tr = Th = T = 0.7 mm. The comparison
presented in figure 9 shows that the Young modulus of the triangular lattice is close to
that modulus of the bi-lattice, and the triangular lattice has significantly higher strength.
On the other hand, the triangular lattice fails for relatively small deformations and is less
efficient at dissipating energy before breaking, as is discussed below.

− The second compared lattice is rhombille; its microstructure is shown in the middle
part of figure 1c. The specimen for this lattice was obtained by removing the h-rods
in the bi-lattice; therefore, its relative density is a little smaller, ρ = 0.198. Since the
obtained lattice becomes bending dominated, its elastic performance drops down by an
order of magnitude, which illustrates the importance of the thin rods in the suggested
bi-lattice.

The obtained experimental results allow for comparing the energy release before the total
failure. We compare the heterogeneous bi-lattice and the homogeneous triangular lattice.
The mechanical energy released by a specimen during the experiment is equal to the area below
the force–displacement diagram (figure 10a,b). It is the sum of the elastic strains energy Eel and
the energy dissipated due to the plastic deformation and the rupture of separate rods Ed

Etot = Eel + Ed (4.6)
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Figure 10. Force versus displacement diagrams for the bi-lattice (a), for the triangular lattice (b) and the illustration of their
structure (c).

as is illustrated schematically in figure 10c. It is convenient to use this scheme for the further
considerations, thus,

Eel = 1
2 Fcr�e and Ed = Fcr�d, (4.7)

where Fcr is the critical force corresponding to the plateau level and defined by the lattice strength,
�e and �d are the specimen elongations caused by the elastic and non-elastic deformations,
respectively. The approximate experimental values of these quantities for both lattices are derived
from the force–displacement diagrams in figure 10a,b and the ratios of the total and the dissipated
energies are

η
exp
tot = Eb

tot

Et
tot

= 0.66 (4.8)

and

η
exp
d = Eb

d

Et
d

= 1, (4.9)

where the superscripts ‘b’ and ‘t’ denote hereafter the quantities related to the bi-lattice and the
triangular lattice, respectively. So the triangular lattice specimen of the same size performs better.

The influence of the specimen length Lx on the above ratios is different. The triangular lattice
fails when a crack propagates across the sample, but the bi-lattice tolerates damage uniformly
distributed in the whole volume. Therefore, the released energy in the triangular lattice is
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independent of the length of the sample, but the released energy in the bi-lattice linearly grows
with the sample length.

The elastic elongations can be expressed through the average strains ε̄
(el)
x corresponding to the

limit of the elastic response
�b

e = ε̄
(el)b
x Lx (4.10)

and
�t

e = ε̄
(el)t
x Lx. (4.11)

The non-elastic displacement of the triangular lattice is caused by the plastic deformation and
rupture of the rods along the crack line, consequently, the displacement �t

d is independent of
the specimen length. Contrarily, in the bi-lattice the damage is evenly distributed in the material
volume, consequently �b

d scales with the element length

�b
d = αLx. (4.12)

Therefore, the energies ratios are

ηtot(Lx) = Fb
cr(2α + ε̄

(el)b
x )

Ft
cr(2�t

d/Lx + ε̄
(el)t
x )

and ηd(Lx) = Fb
crαLx

Ft
cr�

t
d

.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.13)

For a sufficiently long specimen, the bi-lattice has a much higher energy absorbing capacity.
Namely, after deriving the values of parameters entering formulae (4.13) from the experimental
curves in figure 10 one obtains ηtot(∞) = 1.5 and ηd(∞) → ∞.

5. Concluding remarks
The present research is motivated by the previous paper [21] on fault-tolerant beam lattices
made of brittle material. The design concept obtained in that work is essentially geometrical: the
lattice must be inhomogeneous, which stimulates damage in the weak links; the damage does not
propagate due to strong links; therefore, the localized damage occurs in many spots in the lattice.
The partially damaged lattice accumulates the damage and releases the impact energy while
keeping its stiffness, strength and structural integrity. The concept is robust; it was numerically
tested for a elastic-brittle material, and in the present paper, experimentally verifies this concept
for a elastic–plastic material and finds consistent results.

We tested the heterogeneous lattice consisting of two types of beams. Thick beams form a
rhombille bending-dominated lattice, and thinner beams are added to transform it to a triangular
lattice. The thinner beams play an essential role in switching the elastic response from the
bending dominated to the stretch dominated. The effective stiffness of the obtained heterogeneous
isotropic lattice (bi-lattice) is just 16% less than the stiffness of the uniform triangular lattice; the
later has the maximal possible stiffness for the given relative density. On the other hand, the bi-
lattice demonstrates the fault-tolerant failure response better than the triangular lattice. Namely,
the final stage of localized damage where a catastrophic macro-crack propagates is preceded by a
stage of evenly distributed damage of space-separated failed elements.

In addition to the forms of distributed damage for brittle lattices described in [21], the
experiments revealed new forms of distributed damage for elastic–plastic materials. For small
axial deformation of the specimen, the elastic response of the bi-lattice is linear. Upon greater
deformation, groups of thinner elements buckle; after the buckling, the lattice remains linearly
elastic with decreased stiffness. Even greater deformation causes plastic yielding followed by the
rupture of another group of lattice elements that results in a plateau region at the stress–strain
diagram. The loading–unloading curves show that during this stage the lattice remains stiff and
preserves its bearing ability. Remarkably, the switch from the linear elastic to the plastic response
does not include the external force drop which takes place for the parent material.
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The comparison of the failure of the fault-tolerant inhomogeneous bi-lattice and the
homogeneous triangular one shows that the bi-lattice is preferable from the total energy
release point of view thanks to the extended stage of evenly distributed damage. Its excellent
energy absorption capacity becomes pronounced for the energy irreversibly dissipated by plastic
deformation and rupture of lattice elements. Note that the heterogeneous microstructure of the
considered bi-lattice with thin h-beams surrounded by thicker r-beams is a discrete analogue of
the biocalcite-like composite, characterized by soft inclusions embedded in a stiff matrix. The
advantage of such a microstructure for increasing the defect tolerance ability of a composite in
the framework of fracture problems was emphasized in [26].

This work investigates distributed damage in fault-tolerant heterogeneous lattices
experimentally. The considered bi-lattice is less stiff and less strong than uniform triangular one,
but it remains intact for the relatively high deformations, its damage is not catastrophic, and it
possesses an excellent energy absorption capacity. Future research will investigate the design of
three-dimensional fault-tolerant trusses.
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Appendix A
The effective elastic moduli of the heterogeneous bi-lattice with the microstructure shown in
figure 1b are given by the following formulae, see [21]

ν∗ = 4t2
r ((1 − t2

r ) + 4t2
h((1 − t2

h) + t3
r th(1 − 9t2

h) + trth(1 + 7t2
h)

P1(tr, th)
(A 1)

and
E∗
Ep

= 2(2tr + th)(8t4
r + 9trth + t3

r th + trt3
h + 9t3

r t3
h + 8t4

h)√
3P1(tr, th)

, (A 2)

where
th = Th/l, tr = Tr/l

and
P1(tr, th) = 4t2

r P2(tr) + trth(19 + 9t2
h) + (3t3

r + 4th
2)P2(th), P2(t) = 1 + 3t2.
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