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Auxetic multiphase soft composite material design
through instabilities with application for
acoustic metamaterials

Jian Li,a Viacheslav Slesarenkoa and Stephan Rudykh *b

We investigate the instability-induced pattern transformations

in 3D-printed soft composites consisting of stiff inclusions and

voids periodically distributed in a soft matrix. These soft auxetic

composites are prone to elastic instabilities giving rise to negative

Poisson’s ratio (NPR) behavior. Upon reaching the instability point,

the composite microstructure rearranges into a new morphology

attaining an NPR regime. Remarkably, identical composites can morph

into distinct patterns depending on the loading direction. These fully

determined instability-induced distinct patterns are characterized by

significantly different NPR behaviors, thus, giving rise to enhanced

tunability of the composite properties. Finally, we illustrate a potential

application of these reversible pattern transformations as tunable

acoustic-elastic metamaterials capable of selectively filtering low

frequency ranges controlled by deformation.

Auxetic materials, also known as materials with negative Poisson’s
ratio (NPR), are characterized by their unusual response to
uniaxial strain. Opposite to conventional materials, they demon-
strate lateral shrinkage while being compressed. This endows
auxetic materials with many desirable properties, such as
enhanced mechanical resistance,1,2 variable permeability,3,4

high energy absorption ability5 and synclastic behavior.6 Due
to these remarkable properties, auxetic materials can be poten-
tially used in various applications, including protective devices,7

smart sensors8 and filters,3,9 angioplasty stents,10 fasteners11

and textiles.12 Among them, perforated systems13–15 are of
particular interest thanks to their relative simplicity and low
cost of manufacturing; for example, various periodic patterns,
ranging from diamonds16 to stars17 or slits,18–20 have been
explored to design auxetic materials. Meanwhile, there has been
increasing interest in using elastic instability induced pattern
transformations to design reconfigurable metamaterials that
exhibit negative Poisson’s ratio behavior.21

Bertoldi et al.22 illustrated the NPR behavior in two-
dimensional periodic porous structures with square arrays of
circular voids in an elastomeric matrix. They found that the
auxetic behavior arose from the dramatic changes in geometry
due to the development of elastic instability. Overvelde et al.23

considered the effect of pore shape on the mechanical
response; Shim et al.24 systematically investigated the role of
circular hole arrangement on the post-buckling behavior of the
periodic porous structures. Remarkably, these reversible pattern
transformations have been demonstrated to be instrumental
to design tunable color displays,25,26 and phononic27–29 and
photonic30 switches. The design of the periodic elastomeric
porous structures is based on various distributions of voids in a
single phase matrix material. Furthermore, mechanical properties31

and surface patterns32 in stiff-soft two phase composites can be
controlled by tailored stiff phase distributions.

Here, we put forward a new design of soft auxetic composites
incorporating stiff inclusions and voids periodically distributed
in the soft matrix. The rich design space of the material system
provides the means to control the onset of instabilities and
pattern formations through the positioning of the stiff phase,
while maintaining the ability to pre-design collapse of the voids.
This combination of voids, soft and stiff phases gives rise to new
admissible multiple pattern switches, and tunable and enhanced
NPR behavior. Guided by our numerical simulations, we experi-
mentally realize the instability-induced pattern transformations
and the NPR behavior in 3D-printed multiphase soft auxetic
composites. In addition, we illustrate a potential application of
the reported pattern transformation phenomenon for the design
of acoustic soft metamaterials possessing tunable stop bands at
low frequencies of elastic waves.

1. Material fabrication and experiments

The periodic composite specimens were fabricated by using an
Object Connex 260-3 3D printer. The 3D printed samples were
composed of stiff circular inclusions and voids periodically
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distributed in the soft matrix as schematically shown in Fig. 1.
The radius of the circular voids and stiff inclusions was
r0 = 2 mm, and the initial matrix volume fraction was c(m) = 0.3.
The stiff inclusions were printed using Verowhite resin, while
the soft matrix was printed using FLX9860 digital material,
which is a mixture of soft TangoBlackPlus (B85 wt%) and stiff
Verowhite (B15 wt%).33 The out-of-plane thickness of both
specimens was t = 10 mm. Uniaxial compression tests were
performed using a Shimadzu EZ-LX testing machine (maximum
load 2 kN). During the test, the specimens were placed in a
transparent fixture to prevent out-of-plane deformation.
The specimens were quasi-statically compressed at a constant
strain-rate of 2 � 10�4 s�1. Since the microstructure exhibits
different mechanical responses in the X- and Y-directions, two
sets of experiments – compression in the X-, and Y-directions –
were performed. The specimens that were loaded in the X or Y
material direction were composed of 8 � 11 or 10 � 9 unit cells,
respectively. The deformation process was recorded using a
high resolution digital camera.

2. Numerical simulations

Numerical simulations are performed by means of the finite
element code COMSOL 5.2a, in which the unit cell (see Fig. 1) is
constructed and the corresponding periodic displacement
boundary conditions are imposed on the opposite sides of the
unit cell. Note that here we consider a 2D-system, in particular,
plane-strain conditions are used; similar conditions are main-
tained in the experimental setting. The matrix and inclusion
materials are modeled as neo-Hookean materials with initial
shear moduli of m(m) = 0.60 MPa and m(i) = 0.63 GPa, respectively.
The onset of instability is identified by Bloch–Floquet analysis
superimposed on the deformed state;27 the analysis allows us to
identify the critical strain and the corresponding patterns that
are formed upon achieving the critical level of deformation. This
information is used in the post-buckling numerical analysis,
for which new unit cells are constructed to match the new
instability-induced periodicity. In particular, an enlarged unit
cell consisting of 1 � 2 primitive unit cells with small amplitude

geometrical imperfections in the form of the buckling mode
(obtained by Bloch–Floquet instability analysis) is numerically
analyzed in the post-buckling regime.

3. Results

Fig. 2 presents the evolution of the instability-induced pattern
transformation when the composite is loaded in the Y (a and b)
or X (c and d) material directions at different strain levels from
0 to 20% (from left to right); rows (a and d) and (b and c) show
the numerical and experimental results, respectively. We
observe that when the critical compressive strain is reached,
the material microstructure experiences rapid and dramatic
changes, leading to formation of the new patterns (see Fig. 2b
and c at e = 0.05), which further evolve with an increase in the
applied strain. These observed changes in pattern transforma-
tion may be a result of a combination of the geometry changes
and inhomogeneous deformation of the nonlinear materials. In
particular, we note that the pattern transformation results
in significant rotation of the stiff inclusion accompanied by
the corresponding local deformation of the matrix. A similar
deformation mechanism has been utilized in the design of
functional metamaterials.14,16,22,26,34 Note that, in agreement
with the numerical instability analysis predictions, the periodi-
city of the new pattern doubles in the Y-direction (regardless of
the compression direction). Although the development of the
instability-induced patterns for the composites loaded in the
X- or Y-direction is initially similar (see Fig. 2a and d at e = 0.05),
their patterns are essentially distinct at larger strain levels (for
details, see the visualization of the deformed configurations in
Appendix 1). The difference in the achieved distinct micro-
structures is dictated by the positions of the stiff inclusions
relative to the loading direction. Thus, various stiff inclusion
distributions give rise to an increased variety of admissible
instability-triggered patterns. We note that the initial shape
of the material microstructure can be fully recovered after
unloading, demonstrating that these pattern transformations
are fully reversible. Remarkably, the structure exhibits a
negative Poisson’s ratio (NPR) behavior upon developing the
new instability-induced pattern; in particular, significant lateral
contractions (in response to vertical contraction) are predicted
numerically, and are observed experimentally (see Fig. 2b and c
at e = 0.2) for both loading cases.

Fig. 3 shows the evolutions of stress (a) and Poisson’s ratio
(c and d) as functions of the applied compressive strain for the
composite structures loaded in the X- and Y-material directions.
Both experiments and simulations indicate that the stress–strain
curves are strongly affected by elastic instabilities (see Fig. 3a). In
the stable regime, the stress–strain curves are almost linear, and
the periodic composite exhibits different responses when loaded
in the X- and Y-direction. In particular, the effective moduli are
0.46 MPa (for the X-material direction) and 0.64 MPa (for the
Y-direction). While the corresponding inclusion-matrix compo-
site with a hexagonal periodic unit cell exhibits similar in-plane
responses for the corresponding X- and Y-loading directions;35

Fig. 1 Schematic of the geometric arrangement of the three phase (stiff
inclusions, voids and soft matrix) periodic composites. a0 denotes the
center-to-center distance between circular voids in the undeformed
configuration.
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the considered void–matrix–inclusion system possesses in-plane
anisotropy as the microstructure differs in the X- and Y-material
directions. For completeness, we show the dependence of the
effective Young’s moduli of the composite loaded in the X- and
Y-material directions on the matrix volume fraction in Appendix 2.
The critical strain levels are e(cr)

X E 0.028 for the composite
loaded in the X material direction; and e(cr)

Y E 0.039 for the
composite loaded in the Y material direction. The critical strain
values are obtained numerically by the Bloch–Floquet analysis
superimposed on the deformed state.27 When the applied
strain exceeds the critical level, significant softening of the
structure is observed for both material loading directions. The
numerical simulations predict earlier developments of instability
patterns, as compared to the observed onset of instabilities in
experiments. In addition, a drop in the stress level is observed
(after the critical strain level) in experiments. This difference is
due to the boundary effects of the tested samples; these effects are
not included in the numerical simulations, in which infinite
composites are examined through consideration of the periodic
unit cell. Similar behaviors were also observed in the buckling of
porous structures.36,37 In addition, the effect of friction between
the fixtures and specimens may also contribute to the appearance
of the local peak in the stress–strain curve.

Remarkably, the onset of instability and the associated
composite microstructure switches significantly affect the effec-
tive Poisson’s ratio (see Fig. 3c and d). We observe that prior to
instability, Poisson’s ratio is positive in the composite loaded
either in the X- or Y-material direction.† When the critical
deformation is reached, the voids suddenly collapse inward
leading to rapid decrease in the composite Poisson’s ratio,
which soon becomes negative. Further increase in compressive

deformation results in a slow decrease of the Poisson’s ratio.
The composite structure loaded in the X or Y material direction
exhibits a significant difference in the values of Poisson’s ratio;
for example, uYX E�0.2 or uXY E�0.6 at e = 0.2, respectively. To
highlight the significance of the stiff phase presence on the
induced negative Poisson’s ratio behavior, we present our
numerical results for the corresponding void–matrix system
(without stiff inclusions), whose buckled patterns have been
experimentally observed by Shan et al.24,38 The dependence of
the Poisson’s ratio on deformation for the void–matrix system
is denoted by dash-dotted blue curves in Fig. 3c and d. We
observe that the void–matrix system is characterized by positive
Poisson’s ratio and NPR behavior is not observed until the
deformation reaches a level of e E 0.2 (for both cases loaded in
the X- or Y-direction). This is in contrast to the NPR behavior
in the composites that start showing the negative values of
Poisson’s ratio after only e E 0.05. Thus, at larger strain levels
the periodic composites show very significant NPR behavior as
compared to the corresponding void-matrix system, for example,
at e = 0.2, the composite shows uYX E�0.2 or uXY E�0.6, while the
void–matrix system has a positive value for uYX E 0.01, and only
uXY E �0.03. Furthermore, the stiff phase makes the composite
prone to elastic instabilities at smaller strains; in particular, the
composite experiences instabilities at only e(cr)

X E 0.028 or
e(cr)

Y E 0.039; while the void-matrix material requires e(cr)
X E 0.120

or e(cr)
Y E 0.078 to buckle. Thus, our results indicate that by

introducing the periodically distributed stiff phase into soft porous
structures, new patterns can be induced upon instabilities; and these
distinct patterns exhibit very different NPR behaviors.

Next, we show an example of the dependence of critical
strain and Poisson’s ratio on shear modulus contrast m(i)/m(m)

Fig. 2 Numerical and experimental images of the structure loaded in the Y-direction (a and b) and X-direction (c and d) at different macroscopic
deformation levels. Scale bar: 20 mm.
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in Fig. 3e and f. The example of the Poisson’s ratio dependence
is given for the deformation level e = 0.2. Through simulations,
we observe that the composites form new periodicity with 1 � 2
primitive unit cells for the considered range of shear modulus
contrasts, m(i)/m(m) from 1 to 1000. The critical strain and
Poisson’s ratio decrease with an increase in shear modulus
contrast for both the X- and Y-loading directions. Thus, composites

with higher shear modulus contrasts are more prone to instabilities
and show more pronounced NPR behaviors.

Next, we explore a potential application of the reported
reconfigurable material for a tunable soft phononic crystal that
can manipulate elastic wave propagation and filter specific
frequency ranges, which, in turn, can be controlled by applied
deformation. The Bloch wave analysis is performed at different

Fig. 3 (a) Numerical and experimental stress–strain curves for the structure loaded in the Y or X material direction. (b) Schematic composite areas for
Poisson’s ratio evaluation. (c) Poisson’s ratio nYX as a function of eX. (d) Poisson’s ratio nXY as a function of eY. (e and f) Dependence of the critical strain and
Poisson’s ratio (at a deformation level e = 0.2) on shear modulus contrast m(i)/m(m).
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deformation levels to obtain the corresponding dispersion
curves.27 The obtained dispersion relations (a and b) and
the evolution of the stop bands for waves propagating in the
X- or Y-direction as a function of the applied deformation (c–f)
are shown in Fig. 4. The reported frequency is normalized as

~f ¼ oa0

�
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðmÞ

.
rðmÞ0

r� �
, where o is angular frequency

and r(m)
0 is the initial matrix density. We note that the initial

density of the inclusions and matrix density are identical,
namely, r(i)

0 = r(m)
0 .

In addition, a frequency domain analysis is performed to
obtain the transmittance spectra, and 16 enlarged unit cells

with periodic boundary conditions are considered in the
numerical model. Shear wave (S wave) and pressure wave
(P wave) are excited to evaluate the corresponding attenuation,

which is calculated as F ¼ 20 log10
uout

uin

����
����, where uin and uout

refer to the average displacement for the input and output
enlarged unit cell, respectively.

Fig. 4a and b show the dispersion relations and corres-
ponding transmittance spectra in the undeformed and deformed
(eX = 0.1) states. Here, we show the results for elastic waves
propagating in the X direction at a low frequency range f̃ r 0.3.
In the undeformed state, the periodic structure possesses the

Fig. 4 (a and b) Dispersion relations and transmittance spectra for elastic waves propagating in the X direction in the undeformed (a) and deformed (b)
states. (c–f) Evolution of the stop bands for waves propagating in the X (c and d) or Y (e and f) direction as a function of the applied strain in the X (c and e)
or Y (d and f) direction. The shaded grey areas and blue areas correspond to the band gap structure of the void–inclusion–matrix composite and void–
matrix system, respectively. The dotted curves and the dashed curves correspond to the critical strain of the composite and void–matrix system,
respectively.
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first band gap (i.e. the frequency ranges where neither pressure
nor shear waves can propagate) at a lower boundary f̃ = 0.246
with a width Df̃ = 0.016. With an applied strain eX = 0.1, the
band gap shifts the lower boundary towards f̃ = 0.224, and
widens up to Df̃ = 0.045. Moreover, in the deformed state, a new
band gap – that does not exist in the undeformed state – opens
at a lower frequency range f̃ = 0.150–0.170. Furthermore, the
transmittance spectra shown in Fig. 4a and b demonstrate
significant attenuation at the corresponding bang gap frequency
ranges for both shear and pressure waves.

Next, we show the evolution of the band gaps (denoted by
shaded grey areas) for an elastic wave propagating in the X- or
Y-direction as a function of the applied strain in the X or Y
material direction in Fig. 4c–f. We observe that the widths and
locations of the band gaps are significantly influenced by
applied deformation, and the new band gaps open upon reaching
the instability point and pattern transformations. In the stable
regime, for an elastic wave propagating in the X-direction, the
prohibited frequency range is narrowed and shifted towards
lower frequencies with an increase in the strain applied in the
X-direction; while the applied strain in the Y-direction expands
the band gap width and shifts it towards higher frequencies. In
the post-buckling regime, the width of the band gap increases
significantly. Moreover, the new band gaps are opened at low
frequencies. For elastic waves propagating in the Y-direction,
there is no band gap in the undeformed state (in the considered
frequency range f̃ r 0.3). However, the instability induced new
patterns give rise to formation of new band gaps. For example, at
the applied strain e = 0.2, the structure loaded in the X-direction
possesses two band gaps at f̃ = 0.081–0.096 and 0.151–0.232
frequency ranges, whereas the structure loaded in the Y-direction
possesses five band gaps at f̃ = 0.048–0.062; 0.074–0.076;
0.139–0.178; 0.223–0.224; and 0.249–0.292. These results indicate
that the reported instability-induced pattern transformations in
multiphase composites holds significant potential for applica-
tions as switchable acoustic metamaterials.

For comparison, we present the evolution of the band gaps
(denoted by shaded blue areas) in the void–matrix system
(corresponding to the considered composite with the stiff
inclusions replaced by voids) in Fig. 4c–f. The corresponding
matrix volume fraction is identical to that of the void–matrix–
inclusion system, namely, c(m) = 0.3. In the void–matrix system,
the instability induced pattern also opens the band gaps;
however, the widths of the band gaps are significantly
narrowed, and their locations are at higher frequency ranges
as compared to the composite (compare the shaded blue and
grey areas in Fig. 4c–f). In addition, we provide an example with
the following material parameters: matrix volume fraction
c(m) = 0.3, a0 = 10 mm, m(m) = 0.6 MPa, r(m)

0 = 103 kg m�3;
and, for the composite with stiff inclusions, we consider
m(i) = 630 MPa and r(i)

0 = r(m)
0 . When elastic waves propagate in

the undeformed composite in the Y direction, there is no band gap
in the frequency range 0–600 Hz for both composites. However,
at the applied deformation level of eX = 0.2, the void–matrix
material opens a band gap at a frequency range 499.2–545.0 Hz,
whereas the composite with stiff inclusions exhibits more

remarkable band gaps at lower frequency ranges, namely,
at 198.7–234.1 Hz and 370.1–568.8 Hz. This is remarkable
because it is usually challenging to open band gaps at low
frequency ranges.

We note that many soft materials are rate dependent, and
this aspect is not included in the simulations. Therefore, the
numerical predictions of the band gap are more applicable
for the composites made out of phases with low damping;
otherwise, these effects may shift the edges of the band gaps and
affect the corresponding attenuations.39,40 We note that the
computational predictions of the band gaps in the soft single
phase porous system have been experimentally demonstrated
through the observed capability of significant wave attenuation
in the frequency ranges controlled by deformation.38 In addition,
the examined composite exhibits significant NPR behavior and
opens low frequency band gaps after its deformation exceeds the
critical level; although the effective negative Poisson’s ratio
would result in a lower initial slope (corresponding to long
waves) of the longitudinal or pressure wave branch in dispersion
curves, the observed effective NPR may not be directly related to
the formation of the band gaps.

Moreover, we note that the performance of the system can be
potentially optimized through a selective choice of distribution,
volume fractions, and shapes of stiff inclusion and voids, to give
rise to specific properties, such as enhanced NPR behavior; the
effect of material properties, such as shear modulus and density
contrasts, and viscoelasticity, on the material performance and
wave propagation properties can be also considered in future work.

To summarize, through the combination of numerical calcula-
tions and experiments on 3D printed composite samples, we
demonstrate the existence of multiple stable patterns in identical
composite materials with periodically arranged phases. These new
instability induced patterns – tunable by the location of the stiff
phases – give rise to the negative Poisson’s ratio behavior. Thus,
one can potentially pre-design and significantly tune the onset of
instability and the associated microstructure transformations.
Thus, we achieve highly tunable and switchable properties and
functionalities, such as negative Poisson’s ratio, and the acoustic
properties of the soft composite materials. We illustrate that the
reported phenomenon of reversible pattern transformations in
composite materials can be utilized for the design of highly
tunable phononic crystals. The reported multiphase composite
material system opens new routes for the design of reconfigur-
able materials and devices, including acoustic switches,38,41

actuators,42–46 soft robotics,47,48 and flexible electronics.49–51
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Appendix 1: visualization of the
deformed configuration

The distinct deformed configurations of the composite loaded
in the X-direction (a, c, e and g) or Y-direction (b, d, f and h) are
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shown in Fig. 5. For completeness, we show the deformed
configuration in two selections of the enlarged unit cell: the
stiff inclusions located in the middle of the unit cell (a, b, e
and f); and the stiff inclusions located in the corners of the unit
cell (c, d, g and h) (as shown in Fig. 5). Although, the buckled
patterns for the composite loaded in the X- or Y-direction
are similar in the initially post-buckling deformation stage
(compare the deformed configuration in Fig. 5 at e = 0.05), at
larger deformation levels, clearly distinct deformed void shapes
are formed in the composite (compare the deformed configu-
ration in Fig. 5 at e = 0.2). Thus, the composite develops
different patterns when loaded in different directions.

Appendix 2: effect of the matrix
volume fraction on the composite
effective Young’s modulus

The dependence of the effective Young’s moduli of the compo-
site loaded in the X- and Y-material directions on the matrix
volume fraction is shown in Fig. 6. The effective Young’s
modulus is calculated as the initial slope of the stress–strain
curve in small deformations. The numerical simulations have
been verified against the analytical estimates for the matrix–
inclusion composite with a hexagonal periodic unit cell.35 Here,
we consider a nearly incompressible material for the matrix and
inclusion, and m(i)/m(m) = 103. The reported effective Young’s
modulus is normalized by the corresponding maximum value
of the modulus. We observe that the effective modulus of the
composite increases with an increase in the matrix volume
fraction for both X- and Y-material loading directions, and the

effective modulus of the composite loaded in the Y-material
direction is always larger than that of the composite loaded in
the X-material direction. Moreover, for the geometrical limits,
namely, c(m) = 0.093 and 1, the normalized effective moduli
attain 0 and 1, respectively.

Appendix 3: evaluation of Poisson’s
ratio

To evaluate the value of Poisson’s ratio at different levels of
applied compressive strain in experimentally observed pattern

Fig. 5 Distinct pattern formation in the composite loaded in the X- and Y-material directions.

Fig. 6 Dependence of normalized effective Young’s moduli of the com-
posite loaded in the X- and Y-material directions on the matrix volume
fraction.
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transformations, we identified the selected stiff inclusion cen-
troids and representative elements by their row and column
indices (see Fig. 7). Considering the rotational symmetry of the
buckled patterns (see Fig. 2a and d), the nominal strain for each
considered representative element is calculated as

e½i; j�X ¼ xði; jþ1Þ � xði; jÞ þ xðiþ1; jþ1Þ � xðiþ1; jÞ

4a0
� 1; (1)

e½i; j�Y ¼ yðiþ1; jÞ � yði; jÞ þ yðiþ1; jþ1Þ � yði; jþ1Þ

2
ffiffiffi
3
p

a0
� 1: (2)

The corresponding Poisson’s ratio for each representative element
is defined as

u½i; j�XY ¼ �
e½i; j�X

e½i; j�Y

; u½i; j�YX ¼ �
e½i; j�Y

e½i; j�X

: (3)

Then, the average Poisson’s ratio uXY = hu[i, j]
XY i and uYX = hu[i, j]

YX i for
the considered 15 representative elements are computed.
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