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a b s t r a c t 

We investigate the propagation of shear waves in finitely deformed 3D fiber-reinforced composites. We 

employ a micromechanics based approach and derive explicit expressions for the phase and group ve- 

locities of the shear waves in the long wave limit. Thus, we obtain the important characteristics of the 

shear waves in terms of the volume fractions and material properties of the constituents. We find that 

the phase and group velocities significantly depend on the applied deformation and direction of wave 

propagation. To account for interactions between the elastic waves and microstructure in finitely de- 

formed 3D periodic fiber-reinforced materials, we employ the Bloch wave analysis superimposed on large 

macroscopically applied homogeneous deformations, and we implement the technique into a finite el- 

ement code. The Bloch wave numerical analysis reveals the essential dispersion phenomenon for the 

shear waves propagating along the fibers in the finitely deformed 3D periodic fiber-reinforced materials. 

We find that the appearance of the dispersion phenomenon and the corresponding wavelengths can be 

tuned by material composition and deformation. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Nature actively exploits sophisticated microstructures to

achieve remarkable material properties and functionalities. In

particular, the fiber-reinforced deformable composites, possessing

a light weight, high strength and flexibility at the same time, are

widely present in nature ( Saheb and Jog, 1999 ). However, natural

materials are biodegradable and poorly resistant to moisture, and

not always they can provide desirable properties; therefore, syn-

thetic composite materials are of a great interest. The mechanical

performance of composite materials can be tailored by designing

microstructures combining soft and stiff constituents. Recent

advances in the material fabrication techniques and 3D-printing

already allow realization of microstructured metamaterials with

various properties and functionalities ( Babaee et al., 2013; Kolle

et al., 2013; Rudykh and Boyce, 2014a; Lin et al., 2014; Ge et al.,

2013; Bafekrpour et al., 2014; Rudykh et al., 2015; Celli and

Gonella, 2015; Srivastava, 2016; Golub et al., 2012; Fomenko et al.,

2014 ). Moreover, soft metamaterials can be reversibly deformed,

and, thus, enabling us to manipulate their effective properties via

deformation ( Li et al., 2013; Slesarenko and Rudykh, 2016 ). Thus,

for example, elastic wave propagation in soft composite materials
∗ Corresponding author. 
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an be controlled by deformation ( Bertoldi and Boyce, 2008b;

ertoldi et al., 2008; Gei, 2008; Rudykh and Boyce, 2014b; Galich

t al., 2017; Babaee et al., 2016; Chen and Elbanna, 2016 ). Even

n relatively simple homogeneous hyperelastic materials, elastic

ave characteristics can be significantly transformed via defor-

ation ( Dorfmann and Ogden, 2010; Galich and Rudykh, 2015b;

015a; 2016 ). It is worth noting that many soft biological tissues

re found to possess fiber-matrix microstructures ( Humphrey,

002 ), and the soft tissues frequently experience large defor-

ations due to growth or other physiological processes. Hence,

nvestigation of elastic wave propagation in 3D fiber compos-

tes (FCs) undergoing finite deformations can be beneficial for

iomedical applications such as ultrasound testing. 

Small amplitude elastic wave propagation in finitely deformed

omogeneous isotropic materials was pioneered by Biot (1940) on

he basis of the static nonlinear theory ( Biot, 1939 ). Waves of

 finite amplitude propagating in a pre-stressed elastic medium

ere investigated by John (1966) , and Currie and Hayes (1969) .

oulanger and Hayes (1992) considered wave propagation in

nitely deformed incompressible Mooney–Rivlin materials and

erived explicit relations for wave velocities. Boulanger et al.

1994) extended this work to a broader class of finitely deformed

ompressible Hadamard materials and first obtained the explicit

xpressions for the phase velocities of longitudinal and transver-

al waves. Recently, Destrade and Ogden (2013) have revised and

eneralized the problem of an infinitesimal wave propagation in

http://dx.doi.org/10.1016/j.ijsolstr.2016.12.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2016.12.007&domain=pdf
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Q  
he finitely deformed hyperelastic materials by application of the

nvariant theory. More recently, Galich and Rudykh (2015b ) have

nvestigated infinitesimal wave propagation in finitely deformed

ompressible Gent materials, exhibiting pronounced stiffening ef-

ects, and obtained closed form expressions for the phase velocities

f longitudinal and transversal waves. 

By employing the nonlinear elastic theory ( Truesdell and

oll, 1965 ) and a phenomenological approach, Scott and Hayes

1976) considered small amplitude plane waves superimposed

n a homogeneous deformation in the so-called idealized fiber-

einforced materials, assuming an incompressible matrix and in-

xtensible fibers. Later, Scott (1991, 1992) extended this analysis

nd considered infinitesimal vibrations of an arbitrary form su-

erimposed on a finite deformation for a broad class of elastic

nisotropic materials. The infinitesimal elastic wave propagation

n nearly incompressible and nearly inextensible fiber-reinforced

aterials with unidirectional and orthogonal fibers was examined

y Rogerson and Scott (1994) . More recently, Ogden and Singh

2011) revisited the problem of infinitesimal wave propagation in

n incompressible transversely isotropic elastic solid in the pres-

nce of an initial stress. In their work, Ogden and Singh (2011) ex-

loited the phenomenological theory of invariants and presented a

ore general and transparent formulation of the theory for small

mplitude waves propagating in a deformed transversely isotropic

yperelastic solid. 

In this work, we employ a micromechanics based approach ac-

ounting for the phase properties and their spatial distribution

o analyze the wave propagation in finitely deformed 3D FCs, as

pposite to previous works that employ phenomenological ap-

roach ( Scott and Hayes, 1976; Scott, 1991, 1992; Rogerson and

cott, 1994; Ogden and Singh, 2011 ), or numerically model the

omposites in 2D settings ( Rudykh and Boyce, 2014b; Bertoldi and

oyce, 2008b ), or do not consider finite deformations ( Aberg and

udmundson, 1997; Kushwaha et al., 1993 ). Here, we derive ex-

licit closed form expressions for phase and group velocities of

he shear waves for any direction of wave propagation in finitely

eformed 3D fiber-reinforced materials with neo-Hookean phases.

hese explicit expressions provide important information on the

lastic wave propagation in the long wave limit. To account for

he interaction of the elastic waves with the composite microstruc-

ure, the Bloch wave analysis is implemented in the finite ele-

ent code, allowing us to analyze small amplitude motions su-

erimposed on finite macroscopically applied homogeneous defor-

ations. It should be noted that we analyze the finitely deformed

brous materials in fully 3D settings – both the deformation and

he direction of the wave propagation – which, to the best of our

nowledge, is not covered in the existing literature. We investi-

ate the role of the material composition and phase properties

n the dispersion of shear waves. We specifically focus on the in-

uence of deformation on the dispersion of the shear waves. By

onsidering the waves propagating in the direction of fibers, we

nd that the applied deformation strongly affects the long waves;

hereas the influence of the deformation is weaker for the ranges

f short wavelengths. The effect of deformation is found to be

ore pronounced in FCs with moderate and large shear modu-

us contrasts between the phases and with large volume fractions

f fibers. Finally, we compare the micromechanics based homog-

nization technique and the numerical Bloch wave analysis, thus,

ringing together the different length-scale analyses, and showing

he equivalence of these distinct approaches at certain ranges of

avelengths. 

. Theoretical background 

Consider a continuum body and identify each point in the un-

eformed configuration with its vector X . In the deformed body,
he new location of the corresponding points is defined by map-

ing function x = χ(X , t) . Hence, the deformation gradient is F =
 x /∂ X , and its determinant J ≡ det F > 0 . For a hyperelastic ma-

erial described by a strain energy function ψ( F ), the first Piola–

irchhoff stress tensor can be calculated as follows 

 = 

∂ψ(F ) 

∂F 
. (1) 

or an incompressible material, J = 1 and Eq. (1) modifies as 

 = 

∂ψ(F ) 

∂F 
− pF −T , (2) 

here p represents an unknown Lagrange multiplier. The corre-

ponding Cauchy stress tensor is related to the first Piola-Kirchhoff

tress tensor via the relation σ = J −1 P · F T . 

In the absence of body forces the equations of motion can be

ritten in the undeformed configuration as 

iv P = ρ0 
D 

2 χ

Dt 2 
, (3) 

here ρ0 is the initial density of the material and the operator

 

2 ( • )/ Dt 2 represents the material time derivative. If the deforma-

ion is applied quasi-statically, the right hand part of Eq. (3) can

e assumed to be zero, and the equilibrium equation is obtained

s 

iv P = 0 . (4) 

Consider next infinitesimal motions superimposed on the equi-

ibrium state. The equations of the incremental motions are 

iv ̇ P = ρ0 
D 

2 u 

Dt 2 
, (5) 

here ˙ P is the incremental change in the first Piola–Kirchhoff

tress tensor and u is the incremental displacement. 

The linearized constitutive law can be written as 

˙ 
 i j = A 0 i jkl 

˙ F kl , (6) 

here ˙ F = Grad u is the incremental change in the deformation

radient, and the tensor of elastic moduli is defined as A 0 iαkβ =
 

2 ψ/∂ F iα∂ F kβ . Under substitution of Eq. (6) into Eq. (5) the incre-

ental motion equation takes the form 

 0 i jkl u k,l j = ρ0 
D 

2 u i 

Dt 2 
. (7) 

. Long wave estimates for finitely deformed incompressible 

ber composites 

To analyze small amplitude motions superimposed on a finite

eformation, we present equation of motion (7) in the updated La-

rangian formulation 

 i jkl u k,l j = ρ
∂ 2 u i 

∂t 2 
, (8) 

here A iqkp = J −1 A 0 i jkl F pl F q j and ρ = J −1 ρ0 is the density of the

eformed material. 

We seek a solution for Eq. (8) in the form of plane waves with

onstant polarization 

 = g h (n · x − ct) , (9)

here h is a twice continuously differentiable function and unit

ector g denotes the polarization; the unit vector n defines the

irection of wave propagation, and c is the phase velocity of the

ave. 

Substituting (9) into (8) , we obtain 

 (n ) · g = ρc 2 g , (10)
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Fig. 1. Schematic representation of the FC with random distribution of fibers. ( e 1 , 

e 2 , e 3 ) is the orthonormal basis. 
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where 

Q i j = A i jkl n j n l (11)

is the acoustic tensor defining the condition of propagation of the

infinitesimal plane waves. 

For incompressible materials Eq. (8) modifies as 

A i jkl u k,l j + 

˙ p ,i = ρ
∂ 2 u i 

∂t 2 
, (12)

together with the incompressibility constraint 

u i,i = 0 . (13)

Substitution of (9) and ˙ p = p 0 h 
′ (n · x − ct) , where p 0 is a scalar,

into (12) and (13) yields 

ˆ Q (n ) · g = ρc 2 g and g · n = 0 , (14)

where ˆ Q = ̂

 I · Q · ˆ I and ̂

 I = I − n � n is the projection onto the plane

normal to n . 

Next, let us consider a FC made out of aligned fibers embedded

in a softer matrix with the volume fractions v f and v m 

= 1 − v f .
Here and thereafter, the fields and parameters of the constituents

are denoted by the subscripts ( • ) f and ( • ) m 

for fibers and matrix,

respectively. In the reference configuration the volume fractions of

the phases can be calculated as 

v f = 1 / �

∫ 
�

η f ( X ) dX and v m 

= 1 / �

∫ 
�

(
1 − η f ( X ) 

)
dX , (15)

where η f = 1 if X is within the fiber phase and η f = 0 otherwise;

� is the volume occupied by the composite in the reference state.

The macroscopic deformation gradient is defined as 

F̄ = 1 / �

∫ 
�

F ( X ) dX . (16)

The boundary conditions for F f and F m 

, and for P f and P m 

at the

interfaces between the fibers and matrix are (
F f − F m 

)
· m = 0 and 

(
P f − P m 

)
· w = 0 , (17)

where the unit vector m denotes the initial fiber directions (see

Fig. 1 ), and w is the arbitrary unit vector orthogonal to m . 

In this work, we consider fiber-reinforced materials with incom-

pressible phases described by a neo-Hookean strain energy func-

tion ( Ogden, 1997 ) 

ψ 

inc 
ξ = 

μξ

2 

(F ξ : F ξ − 3) , (18)

where μξ is the initial shear modulus. For a FC with incompress-

ible neo-Hookean phases, an effective strain energy density func-

tion can be constructed ( deBotton et al., 2006 ) 

ψ( ̄F ) = 

˜ μ(
F̄ : F̄ − 3 

)
+ 

μ̄ − ˜ μ(
I 4 + 2 I −1 / 2 

4 
− 3 

)
, (19)
2 2 
here I 4 = m · C̄ · m , and C̄ = F̄ T · F̄ is the average right Cauchy-

reen deformation tensor; 

¯ = v f μ f + v m 

μm 

and ˜ μ = μm 

(
1 + v f 

)
μ f + v m 

μm 

v m 

μ f + 

(
1 + v f 

)
μm 

(20)

re the homogenized elastic moduli. 

The acoustic tensor (14) corresponding to the strain energy

unction (19) takes the form 

ˆ 
 (n , ̄F ) = q 1 ̂ I + q 2 

(
ˆ I · F̄ · m 

)
�

(
ˆ I · F̄ · m 

)
, (21)

here 

 1 = ˜ μ
(
n · B̄ · n 

)
+ ( ̄μ − ˜ μ) 

(
1 − I −3 / 2 

4 

)(
n · F̄ · m 

)2 
(22)

nd 

 2 = 3 I −5 / 2 
4 ( ̄μ − ˜ μ) 

(
n · F̄ · m 

)2 
, (23)

here B̄ = F̄ · F̄ T is the average left Cauchy–Green deformation ten-

or. The acoustic tensor (21) has the following nontrivial eigenval-

es with the eigenvectors lying in the plane normal to n 

 1 = q 1 and a 2 = q 1 + q 2 

(
I 4 −

(
n · F̄ · m 

)2 
)
. (24)

hus, we have two distinct shear waves propagating in a finitely

eformed incompressible FC with the corresponding phase veloci-

ies 

¯
 

(1) 
sw 

= 

√ 

a 1 
ρ̄0 

and c̄ (2) 
sw 

= 

√ 

a 2 
ρ̄0 

, (25)

here ρ̄0 = v f ρ0 f + v m 

ρ0 m 

is the average initial density of the FC. 

The phase velocities of the shear waves (25) coincide only for

pecial cases of applied deformations and directions of wave prop-

gation. For instance, let us consider a uniaxially deformed FC with

he corresponding macroscopic deformation gradient 

¯
 = λe 2 � e 2 + λ−1 / 2 ( I − e 2 � e 2 ) , (26)

here λ is the applied macroscopic stretch ratio. Then, for waves

ropagating perpendicular to the fibers, i.e. m = e 2 and n = e 1 , the

hase velocities of the shear waves coincide 

¯
 sw 

= c̄ (1) 
sw 

= c̄ (2) 
sw 

= 

√ 

˜ μ

λρ̄0 

. (27)

he phase velocities also coincide for the waves propagating along

he fibers, i.e. n = m = e 2 , 

¯
 sw 

= c̄ (1) 
sw 

= c̄ (2) 
sw 

= λ

√ 

μ̄ + ( ̃  μ − μ̄) λ−3 

ρ̄0 

. (28)

owever, for an oblique propagation of the waves relative to the

ber direction, for example, m = e 2 and n = ( e 1 + e 2 ) / 
√ 

2 , the

hase velocities of the shear waves are distinct 

¯
 

(1) 
sw 

= 

√ 

2 ̃  μ + 

(
λ3 − 1 

)
μ̄

2 λρ̄0 
( g = e 3 ) (29)

nd 

¯
 

(2) 
sw 

= 

√ 

˜ μ + μ̄
(
1 + 2 λ3 

)
4 λρ̄0 

(
g = ( e 2 − e 1 ) / 

√ 

2 

)
. (30)

ote that (28) yields an explicit expression for the critical stretch

atio corresponding to the onset of macroscopic instability under

niaxial contraction ( Rudykh and deBotton, 2012 ), namely 

cr = 

(
1 − ˜ μ

μ̄

)1 / 3 

. (31)
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a b

Fig. 2. Slowness curves for the out-of-plane (a) and in-plane (b) shear waves propagating in the FC with v f = 0 . 2 , μ f /μm = 10 , and ρ0 f /ρ0 m = 1 under uniaxial tension (26) . 

Scale is 0.4 per division, and slowness is normalized by 
√ 

˜ μ/ ̄ρ0 . Note that the horizontal and vertical axes with the corresponding labels n 1 /c and n 2 /c serve for showing 

the principal directions and physical quantity presented on the polar plot only. 
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To illustrate the influence of the deformation and direction of

ave propagation on the characteristics of elastic waves in the

Cs, we consider wave propagation in the plane 〈 e 1 , e 2 〉 , i.e. n =
os ϕ e 1 + sin ϕ e 2 . By the use of the explicit relations (25) we

onstruct the polar diagrams of slowness s̄ sw 

(ϕ) = 1 / ̄c sw 

(ϕ) , also

nown in literature as slowness curves ( Musgrave, 1970; Nayfeh,

995 ). Fig. 2 shows an example of the slowness curves for the so-

alled out-of-plane (with polarization g = e 3 ) and in-plane (with

olarization lying in plane 〈 e 1 , e 2 〉 ) shear waves in the FC under-

oing uniaxial tension along the fibers. The examples are given for

he FC with v f = 0 . 2 , μ f /μm 

= 10 , and the fiber direction m = e 2 .

he continuous black curves correspond to the undeformed FC,

hile the dash-dotted green and dotted blue curves are for the FC

nder the uniaxial contraction ( λ = 0 . 85 ) and extension ( λ = 1 . 5 ),

espectively. Note that the critical stretch ratio for the consid-

red FC undergoing uniaxial contraction is λcr = 0 . 80 ; therefore,

he presented slowness curves for the compressed ( λ = 0 . 85 ) FC

orrespond to a macroscopically stable state. The slowness curves

learly indicate the significant influence of the applied deforma-

ion on the shear wave propagation. Specifically, the contraction

long the fibers results in a significant decrease of the phase ve-

ocities of the shear waves propagating in the direction of fibers;

hile the phase velocities increase for the waves propagating per-

endicular to the fibers since these directions experience exten-

ion. Note that the phase velocity of the in-plane shear wave in

he uniaxially deformed FC is maximal for certain directions of

ave propagation n 0 . To find these directions, we substitute (26) ,

 0 = cos ϕ 0 e 1 + sin ϕ 0 e 2 , and m = e 2 into (25) 2 , and then solve

he extreme value problem for the phase velocity c̄ (2) 
sw 

as a func-

ion of ϕ0 : 

 0 = ±1 

2 

arccos 

( 

1 − λ3 

3 

(
1 − ˜ μ

μ̄

)
) 

+ πz, z = 0 , 1 . (32)

n the undeformed state ϕ 0 = ±π
4 , ± 3 π

4 . Moreover, these directions

iffer from the principal directions in contrast to the out-of-plane

hear wave – the phase velocity of which has the maxima in
he directions of the principal axes. For example, in the uniaxially

tretched FC the phase velocity of the out-of-plane shear wave is

aximal for the wave propagation along the fibers, i.e. for n = ±e 2 
see Fig. 2 (a)). 

The dispersion relations for the long waves in an incompress-

ble neo-Hookean FC are derived from (25) and have the following

orm 

¯  (1) 
sw 

= 

√ 

b 1 
ρ̄0 

and ω̄ 

(2) 
sw 

= 

√ 

b 2 
ρ̄0 

(33) 

here 

 1 = ˜ μ(k · B̄ · k ) + ( ̄μ − ˜ μ) 
(
1 − I −3 / 2 

4 

)(
k · F̄ · m 

)2 
(34)

nd 

 2 = b 1 + 3 I −5 / 2 
4 ( ̄μ − ˜ μ) 

(
k · F̄ · m 

)2 
(

I 4 − k −2 
(
k · F̄ · m 

)2 
)
, (35) 

here k is the wave vector and k = | k | is the wave number. 

Hence, we can find the corresponding group velocity defined as

 g = ∇ k ω. (36) 

ubstitution of (33) into (36) yields explicit expressions for the

roup velocities of the long waves propagating in the finitely de-

ormed FC 

 

( 1 ) 
sw 

= 

(
˜ μB̄ · n + ( ̄μ − ˜ μ) 

(
1 − I −3 / 2 

4 

)(
n · F̄ · m 

)
F̄ · m 

)
√ 

ρ̄0 a 1 
(37) 

nd 

v ( 
2 ) 

sw 

= 

1 √ 

ρ̄0 a 2 

(
˜ μB̄ · n + 

( ̄μ − ˜ μ) 
(
n · F̄ · m 

)[ 
3 I −5 / 2 

4 

(
n · F̄ · m 

)3 
n + (

1 + 2 I −3 / 2 
4 

(
1 − 3 I −1 

4 

(
n · F̄ · m 

)2 
))

F̄ · m 

] )
. 

(38) 

n particular, the group velocities of the shear waves coincide for

aves propagating perpendicular to the fibers (i.e. m = e 2 and n =
 ) in the uniaxially deformed FC 
1 
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a bn2v

n1v n1v

n2v

Fig. 3. Energy curves for (a) – out-of-plane and (b) – in-plane shear waves propagating in the FC with v f = 0 . 2 , μ f /μm = 10 , and ρ0 f /ρ0 m = 1 under uniaxial tension. Scale 

is 0.4 per division, where group velocity is normalized by 
√ 

ρ̄0 / ̃ μ. Note that the horizontal and vertical axes with the corresponding labels (n 1 v) and (n 2 v) serve for showing 

the principal directions and physical quantity presented on the polar plot only. 
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v (1) 
sw 

= v (2) 
sw 

= 

√ 

˜ μ

λρ̄0 

e 1 . (39)

The group velocities also coincide for the waves propagating along

the fibers, i.e. n = m = e 2 , 

v (1) 
sw 

= v (2) 
sw 

= λ

√ 

μ̄ + ( ̃  μ − μ̄) λ−3 

ρ̄0 

e 2 . (40)

To illustrate the derived results (37) and (38), we consider wave

propagation in the plane 〈 e 1 , e 2 〉 , i.e. n = cos ϕ e 1 + sin ϕ e 2 . Re-

call that the outer normal to the slowness curve shows the di-

rection of the energy flow ( Musgrave, 1970; Nayfeh, 1995 ). Hence,

by assigning the absolute value of the group velocity (i.e. | v sw 

|)

to the normal to the slowness curve for all possible propaga-

tion directions, the polar diagrams of group velocity or the en-

ergy curves ( Musgrave, 1970; Nayfeh, 1995 ) are constructed. Fig. 3

shows an example of the energy curves for (a) out-of-plane and

(b) in-plane shear waves propagating in the uniaxially deformed

FC with v f = 0 . 2 , μ f /μm 

= 10 , and ρ0 f /ρ0 m 

= 1 . The continuous

black curves correspond to the undeformed FC while the dash-

dotted green and dotted blue curves refer to the uniaxial contrac-

tion ( λ = 0 . 85 ) and extension ( λ = 1 . 5 ), respectively. Clearly, the

group velocities of the shear waves strongly depend on the applied

deformation and direction of wave propagation. Moreover, the en-

ergy curve of the in-plane shear wave has intersections, and their

position can be manipulated by deformation (see Fig. 3 (b)). These

intersections of the energy curves mean that the absolute values

and directions of group velocity coincide for two different direc-

tions of wave propagation. For the out-of-plane shear wave the in-

tersections are not observed (see Fig. 3 (a)). It is worth mention-

ing also that the energy curves of plane waves coincide with the

wave fronts of impulsive point source excited waves in homoge-

neous anisotropic materials ( Langenberg et al., 2010; Nayfeh, 1995 ).

In this case, these cusps of energy curves will correspond to the

regions of null energy ( Nayfeh, 1995 ). 
Next, let us consider slowness and energy curves near to, and

t the onset of instability point. Fig. 4 shows the slowness curves

f the shear waves propagating in the FC subjected to the uniax-

al contraction of λ = 0 . 81 (dash-dotted green) and λ = 0 . 80 (dot-

ed red), while λcr = 0 . 80 . A comparison of Figs. 2 and 4 shows

hat the slowness of both shear waves propagating along the fibers

ramatically increases (or phase velocity decreases) when the crit-

cal stretch is approached. In particular, in the FC contracted to λ =
 . 81 , the slownesses of shear waves propagating in the direction of

bers are 3.8 times larger than in the undeformed FC. Eventually,

he slownesses tend to infinity in the FC contracted to the critical

tretch ratio, i.e. at λ = 0 . 80 . This is due to the fact that the phase

elocities of the shear waves propagating along the fibers attain

ero value in the FC subjected to λ = λcr (see (28) ). Lastly, Fig. 5

hows the energy curves of the shear waves propagating in the FC

ubjected to the uniaxial contraction of λ = 0 . 81 ((a) and (b)) and

= 0 . 80 ((c) and (d)). We observe that the energy curve of the

ut-of-plane shear wave for the FC subjected to λcr degenerates

nto the three dots (see Fig. 5 (c)). The dot in the center means that

he absolute value of the group velocity is zero for the wave prop-

gating in direction of fibers (see (40) ); the other two dots mean

hat the absolute value and direction of the group velocity do not

hange with the wave propagation direction. For the in-plane shear

ave, the energy curve degenerates into the dot and two curved

riangles (see Fig. 5 (d)). The dot in the center corresponds to the

ero group velocity of the wave propagating along the fibers, while

he curved triangles refer to the curvature of the corresponding

lowness curve (see Fig. 4 (b)) in the vicinity of the wave prop-

gation directions perpendicular to the fibers (i.e. n = ±e 1 ). 

. Bloch wave analysis for wave propagation in 3D periodic FCs 

To obtain the dispersion relations for finitely deformed 3D pe-

iodic FCs, we employ the Bloch wave analysis superimposed on

 finite deformation ( Aberg and Gudmundson, 1997; Bertoldi and

oyce, 20 08b; 20 08a; Rudykh and Boyce, 2014b ). We implement



P.I. Galich et al. / International Journal of Solids and Structures 110–111 (2017) 294–304 299 

a b

Fig. 4. Slowness curves for the out-of-plane (a) and in-plane (b) shear waves propagating in the FC with v f = 0 . 2 , μ f /μm = 10 , and ρ0 f /ρ0 m = 1 under uniaxial ten- 

sion (26) near the instability. Scale is 0.5 per division, and slowness is normalized by 
√ 

˜ μ/ ̄ρ0 . 
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μ  
he analysis in the finite element code. Fig. 6 shows an example

f the corresponding representative volume element (RVE) for a FC

ith a square periodic unit cell. Geometrically, the fibers are char-

cterized by their diameters, namely d = 2 a 
√ 

v f /π, where a is the

eriod of the FC (see Fig. 6 ). The periodic unit cell occupies a do-

ain � in the undeformed configuration, namely 

−a/ 2 ≤ x 1 ≤ a/ 2 , − h/ 2 ≤ x 2 ≤ h/ 2 , 

and − a/ 2 ≤ x 3 ≤ a/ 2 . 
(41) 

First, a solution for a finitely deformed state is obtained.

he macroscopic deformation gradient F̄ = 1 / �
∫ 
� F dV is applied

hrough periodic boundary conditions imposed on the displace-

ents of the RVE faces such that 

 B − U A = 

(
F̄ − I 

)
· ( X B − X A ) = H̄ · ( X B − X A ) , (42)

here A and B are the nodes on the opposite faces of the RVE

oundary, H̄ is the average displacement gradient tensor, and U =
 ( X ) − X is the displacement field. The macroscopic first Piola–

irchhoff stress tensor and the corresponding Cauchy stress tensor

re calculated as P̄ = 1 / �
∫ 
� P dV and σ̄ = 1 / �

∫ 
� σdV, respectively.

igid body motions are prevented by fixing the displacements of

 single node. Although the analysis is general and it can be ap-

lied for materials subjected to any macroscopically applied homo-

eneous deformation F̄ , here the examples are given for a uniaxial

oading (26) . 

Second, the Bloch wave analysis is performed for the finitely

eformed state. The corresponding incremental change in the dis-

lacement and the first Piola–Kirchhoff stress tensor can be ex-

ressed as 

 ( X , t ) = 

˙ κ( X ) e −iωt and 

˙ P = 

˙ P e −iωt , (43)

here ω is the angular frequency. By substitution (43) in (5) , we

btain 

iv ˙ P + ρ0 ω 

2 ˙ κ = 0 . (44)

According to the Floquet theorem ( Kittel, 2004 ) 

˙ ( X + R ) = 

˙ κ( X ) e −i K 0 ·R , (45) 
here R defines the distance between the nodes on the oppo-

ite faces of the RVE in the reference configuration. The periodicity

onditions (45) are imposed in the finite element code through the

orresponding boundary conditions for the displacements of the

pposite faces ( Slesarenko and Rudykh, 2017; Bertoldi and Boyce,

0 08a; 20 08b; Wang and Bertoldi, 2012 ). The dispersion relations

re obtained by solving the eigenvalue problem stemming from

qs. (43) –(45) for a range of the wave vectors K 

0 . 

We start from comparing the results of the Bloch wave numer-

cal analysis and the analytical estimates (33) for the long wave

imit. Fig. 7 presents the comparisons for the wave propagating

n the direction of fibers. The FCs are subjected to the uniaxial

ension (26) along the fiber direction of the magnitude λ = 1 . 25 .

ig. 7 (a) and (b) show the comparison for FCs with v f = 0 . 25 ,

f /μm 

= 10 and μ f /μm 

= 10 0 0 , respectively; while Fig. 7 (c) and

d) show the comparison for FCs with v f = 0 . 01 , μ f /μm 

= 10 and

f /μm 

= 10 0 0 , respectively. The continuous black curves refer to

he numerical simulations while the dashed red curves correspond

o the long wave estimates (33) . Here and thereafter, we consider

Cs with constituents having identical densities (i.e. ρ0 f /ρ0 m 

= 1 ),

nd frequency is normalized as f n = fa 
√ 

ρ̄0 / ̃  μ, where f = ω/ ( 2 π) .

ig. 7 (a) and (c) show that the long wave estimates are in excel-

ent agreement with the results of numerical simulations up to the

avelengths comparable with the period a of the unit cell for FCs

ossessing a small amount of fibers and a moderate contrast in

he shear modulus between the constituents. However, for larger

ontrasts in the shear moduli, the long wave estimates are in good

greement with the Bloch wave analysis only for wavelengths sig-

ificantly exceeding the period of the unit cell, namely l � π2 a

see Fig. 7 (b) and (d)). Thus, the difference between the long wave

stimates (33) and Bloch wave analysis increases with an increase

n the volume fraction and shear modulus of fibers (i.e. the role of

he fibers becomes more significant). 

Fig. 8 presents the dispersion curves for the periodic FCs

ith v f = 0 . 25 and (a) μ f /μm 

= 10 , (b) μ f /μm 

= 100 , and (c)

f /μm 

= 10 0 0 undergoing uniaxial deformations along the fibers.
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a

c

b

d

Out-of-plane shear wave In-plane shear wave

Fig. 5. Energy curves for the out-of-plane (a, c) and in-plane (b, d) shear waves propagating in the FC with v f = 0 . 2 , μ f /μm = 10 , and ρ0 f /ρ0 m = 1 under uniaxial ten- 

sion (26) near the instability. Scale is 0.3 per division, and group velocity is normalized by 
√ 

ρ̄0 / ̃ μ. 

Fig. 6. RVE for a 3D periodic FC with a square arrangement of fibers. 

T  
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m  

a  
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c  

p  

m  
he dispersion curves presented in Fig. 8 (and also in Fig. 9 ) are

btained by utilizing the Bloch wave analysis implemented in the

nite element code. Clearly, for the FC with the low shear mod-

lus contrast between the fibers and matrix (e.g., μ f /μm 

= 10 ),

he deformation slightly influences dispersion curves ( Fig. 8 (a)).

owever, the influence of deformation increases for the FCs with

oderate and high shear modulus contrasts (e.g., μ f /μm 

= 100

nd μ f /μm 

= 10 0 0 ). Specifically, deformation considerably influ-

nces the dispersion of the waves with wavelengths exceeding the

haracteristic length-scale of the FC ( Fig. 8 (b) and (c)). For exam-

le, for the wavenumber ka/ (2 π) = 0 . 2 , the uniaxial tension of the

agnitude λ = 1 . 5 shifts the dispersion curve from f n = 0 . 29 up to
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Fig. 7. Comparison of the long wave estimates (33) and the Bloch wave numerical analysis for the shear waves propagating in the direction of fibers. Periodic FCs with 

v f = 0 . 25 and (a) μ f /μm = 10 , (b) μ f /μm = 10 0 0 , and v f = 0 . 01 and (c) μ f /μm = 10 , (d) μ f /μm = 10 0 0 are subjected to the uniaxial tension along the fiber direction, 

λ = 1 . 25 . Frequency is normalized as f n = 

ωa 
2 π

√ 

ρ̄0 / ̃ μ. 

Fig. 8. Dispersion curves for the shear waves propagating in the direction of fibers in FCs with v f = 0 . 25 and (a) μ f /μm = 10 , (b) μ f /μm = 100 , and (c) μ f /μm = 10 0 0 . 

The FCs are subjected to the uniaxial tension of the magnitude λ = 0 . 98 (dashed green curves), λ = 1 (continuous black curves), λ = 1 . 5 (dotted blue curves), and λ = 2 

(dash-dotted red curves). Frequency is normalized as f n = 

ωa 
2 π

√ 

ρ̄0 / ̃ μ. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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Fig. 9. Dispersion curves for shear waves propagating in the direction of fibers in FCs with μ f /μm = 10 0 0 in the undeformed state (a) and for the FCs subjected to the 

uniaxial tension of magnitude λ = 1 . 5 (b) and λ = 2 (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. RVE for a 3D periodic FC with a rectangular arrangement of fibers. 

Fig. 11. Dispersion curves for shear waves propagating in the direction of fibers 

in FCs with v f = 0 . 25 and μ f /μm = 100 in the undeformed state with square and 

rectangular ( b = 2 a ) arrangements of fibers. 

p  

a  

l  

F  

l  

w  
f n = 0 . 55 as compared to the response of the undeformed FC with

v f = 0 . 25 and μ f /μm 

= 100 ( Fig. 8 (b)). Remarkably, the dispersion

curves for the short waves (i.e. l � 2 a ) are barely affected by the

uniaxial deformation ( Fig. 8 (b) and (c)). Moreover, the dispersion

curves change more slowly with deformation after a certain level

of stretch is reached (compare dash-dotted red and dotted blue

curves in Fig. 8 ). This happens because the phase velocities (28) of

the long shear waves start to change slowly when a certain level

of deformation is achieved. 

To clarify the influence of the deformation on the dispersion

phenomenon in FCs with various volume fractions of the fibers,

we present dispersion curves for FCs with μ f /μm 

= 10 0 0 in the

undeformed state (a) and for the FCs subjected to the uniaxial ten-

sion of magnitude λ = 1 . 5 (b) and λ = 2 (c) in Fig. 9 . The con-

tinuous black, dotted blue, and dashed-dotted red curves corre-

spond to v f = 0 . 01 , v f = 0 . 10 , and v f = 0 . 25 , respectively. We ob-

serve that the dispersion of shear waves in the fiber direction is

more pronounced for the periodic FCs with large volume fractions

of fibers (compare continuous black and dash-dotted red curves in

Fig. 9 (a)). Moreover, a uniaxial extension of the periodic FCs along

the fibers significantly affects dispersion curves ( Fig. 9 (b) and (c));

however, an increase in the loading leads to a moderate change

in the dispersion curve after a certain level of deformation (com-

pare Fig. 9 (b) and (c)). For example, the frequency of the shear

wave with ka/ (2 π) = 0 . 1 propagating in the FC with v f = 0 . 25 and

μ f /μm 

= 10 0 0 increases from f n = 0 . 21 in the undeformed FC up

to f n = 0 . 64 in the FC subjected to the uniaxial tension of the mag-

nitude λ = 1 . 5 while it increases only up to f n = 0 . 66 in the FC

subjected to the uniaxial tension of the magnitude λ = 2 (compare

dash-dotted red curves in Fig. 9 ). This is due to the fact that the

phase velocities (28) of long shear waves change more slowly after

a certain level of deformation is reached. 

Finally, we consider the influence of the fiber arrangement

on the shear wave propagation in the direction of fibers. Fig. 10

shows an example of RVE for a FC with a rectangular periodic unit

cell. Geometrically, the fibers are characterized by their diameters,

namely d = 2 
√ 

abv f /π (see Fig. 10 ). The periodic unit cell occupies

a domain � in the undeformed configuration, namely 

−a/ 2 ≤ x 1 ≤ a/ 2 , − h/ 2 ≤ x 2 ≤ h/ 2 , 

and − b/ 2 ≤ x 3 ≤ b/ 2 . 
(46)

Fig. 11 presents a comparison of the dispersion curves for shear

waves propagating along the fibers in the FC with the square

and rectangular ( b = 2 a ) arrangements of the fibers. The dispersion

curves of the shear waves vary in the FC with rectangular arrange-

ment of fibers, because we have two distinct characteristic lengths,

namely a and b , as opposite to the square arrangement. We com-
are FCs with the same volume fractions of fibers (i.e. v f = 0 . 25 );

s a result, the dispersion curves of the long shear waves (i.e.

 � 5(a + b) / 2 ) coincide for both square and rectangular periodic

Cs. Consistently with the previous observations, a significant non-

inearity of dispersion curves is observed for the shear waves with

avelengths being comparable to the characteristic lengths of the
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C, namely l ∼ (a + b) . The dispersion curves for shorter waves (i.e.

 � (a + b) / 3 ) are affected only slightly by the fiber arrangement. 

. Concluding remarks 

We considered the shear wave propagation in the 3D fiber-

einforced composites undergoing finite deformations. First, we

erived the explicit closed form expressions for the phase and

roup velocities of the shear waves propagating in the finitely de-

ormed 3D FCs on the basis of a micromechanical approach ac-

ounting for the material properties and distribution of the phases.

ence, the derived explicit relations for the phase and group ve-

ocities were expressed in terms of the actual mechanical prop-

rties of composite constituents and their volume fractions. By

tilizing these expressions, we constructed the slowness and en-

rgy curves revealing the strong influence of deformation on the

ropagation of shear waves. In particular, the shear wave veloc-

ties were shown to vary considerably with the deformation and

irection of wave propagation. Moreover, the energy curve of the

n-plane shear wave was shown to have deformation tunable in-

ersections, meaning that the absolute values and directions of the

roup velocities coincide for the different directions of wave prop-

gation. Thus, we are able to estimate characteristics of wave and

nergy propagation in the finitely deformed 3D fiber composites

mploying these explicit relations, which are applicable for any di-

ection of wave propagation and for any macroscopically applied

omogeneous pre-deformation. These important characteristics are

xpressed in terms of the actual microstructure parameters, such

s volume fractions and phase material properties. This impor-

ant feature distinguishes our results from those derived from phe-

omenological models, where the material parameters need to be

tted, and they are not directly related to the microstructure pa-

ameters and material properties of the constituents. 

Second, we examined the shear wave propagation in the finitely

eformed 3D periodic FCs by application of the Bloch wave ap-

roach in the finite element code. This allowed us to account for

he interactions of the elastic waves with the material microstruc-

ure. As a result, we found the dispersion phenomenon manifesting

n the strongly nonlinear dependence of the wave frequencies on

avenumber. The dispersion and the corresponding wavelengths

f the shear waves in the 3D periodic FCs were found to be tun-

ble by the change in the shear modulus contrast between the

onstituents and volume fraction of the fibers. Specifically, an in-

rease in the shear modulus contrast and amount of fibers leads

o a more pronounced dispersion of shear waves propagating in

he direction of fibers, i.e. the dispersion curves exhibit a signifi-

ant nonlinearity. Moreover, the dispersion of shear waves is highly

ensitive to deformation. In particular, a moderate deformation sig-

ificantly increases the frequency of the long waves. However, the

nfluence of deformation for the short waves is relatively weak. We

ound that the influence of deformation on the dispersion of shear

aves is more pronounced at the beginning of the loading due

o the fact that the phase velocities (28) of the long shear waves

hange quickly up to a certain level of deformation and then the

hase velocities vary slowly with a further loading. Next, we com-

ared the results of the Bloch wave analysis and the long wave

stimates. We found that the long wave estimates for the phase

elocities (25) of shear waves accurately describe the dispersion

elations for the finitely deformed FCs with low shear modulus

ontrast between the fibers and matrix (i.e. μf / μm 

� 10) and small

olume fractions of the fibers (i.e. v f � 0.25). 

Finally, we analyzed the influence of the fiber arrangement on

he propagation of shear waves along the fibers. In particular, by

omparing dispersion curves of shear waves for FCs with square

nd rectangular arrangements of fibers, we observed that (i) long

hear waves are independent of the fiber arrangement, (ii) shear
aves with wavelengths being comparable to the characteristic

engths of the FC are significantly affected by the fiber arrange-

ent, and (iii) short shear waves are affected only slightly by the

ber arrangement. 
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