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A B S T R A C T

In this paper, we study the elastic instability and wave propagation in compressible layered composites un-
dergoing large deformations. We specifically focus on the role of compressibility on the onset of instability, and
elastic wave band gaps (forbidden frequency ranges) in finitely deformed buckled laminates. We employ the
Bloch-Floquet analysis to study the influence of compressibility on the onset of instability and the corresponding
critical wavelengths. Then, the obtained information about the critical wavelengths is used in the subsequent
numerical postbuckling simulations. By application of the Bloch wave numerical analysis implemented in the
finite element code, we investigate the elastic wave band gaps of buckled layered composites with compressible
phases.

The compressible laminates require larger strains to trigger mechanical instabilities. This results in lower
amplitudes of instability induced wavy patterns in compressible laminates as compared to incompressible
layered materials. The instability induced wavy patterns give rise to tunability of the widths and locations of
shear wave band gaps (that are not tunable by deformation in LCs with neo-Hookean phases in the stable
regime); this tunability, however, is not significant in comparison to the tunability of the pressure wave band
gaps. Thus, the complete band gaps (frequency ranges where neither shear nor pressure wave can propagate) can
be controlled by deformation in both stable and post-buckling regimes.

1. Introduction

Design of microstructured metamaterials for manipulating elastic
wave propagation has drawn considerable attention (Babaee et al.,
2016; Bigoni et al., 2013; Celli et al., 2017; Celli and Gonella, 2015;
Chen and Elbanna, 2016; Chen and Wang, 2016; Harne and Urbanek,
2017; Matlack et al., 2016; Miniaci et al., 2016; Srivastava, 2016;
Trainiti et al., 2016; Xu et al., 2015; Zhu et al., 2014; Zigoneanu et al.,
2014). These new materials can potentially serve for enabling various
applications, such as wave guide (Casadei et al., 2012), vibration
damper (Javid et al., 2016), cloaking (Zhang et al., 2011), and sub-
wavelength imaging (Wood et al., 2006; Zhu et al., 2011). Recently, soft
metamaterials with reconfigurable microstructures in response to ex-
ternal stimuli, such as mechanical load (dell’Isola et al., 2016; Galich
et al., 2017a; Li et al., 2016; Meaud and Che, 2017; Zhang and Parnell,
2017), electric and/or magnetic field (Bayat and Gordaninejad, 2015;
Galich and Rudykh, 2017, 2016; Gei et al., 2011; Huang et al., 2014;
Jandron and Henann, 2017; Yang and Chen, 2008), attracted significant
interest for tuning elastic wave propagation. Moreover, the elastic

instability induced buckling phenomena, giving rise to a sudden change
in microstructure, have been demonstrated to be greatly instrumental
for the design of switchable phononic crystals. Thus, Bertoldi and Boyce
(2008a, 2008b) introduced the concept of instability assisted elastic
wave band gaps (BGs) control in soft elastomeric materials with peri-
dically distributed circular voids (Shan et al., 2014; Wang et al., 2014,
2013). Rudykh and Boyce (2014) showed that the elastic instability
induced wrinkling of interfacial layers could be utilized to control the
BGs in deformable layered composites (LCs). In this work, we analyze
the phenomena with specific focus on the influence of the constituent
compressibility on the instabilities and elastic wave BGs of finitely
deformed neo-Hookean laminates in the postbuckling regime.

The important work on the stability of layered and fiber composites
by Rosen (1965), considered stiff layers embedded in a soft matrix as
elastic beams on an elastic foundation, and derived an explicit ex-
pression to predict the critical buckling strain. Parnes and Chiskis
(2002) revisited the instability analysis in linear elastic LCs, and they
found that the buckling strain of dilute composites that experienced
microscopic instability was constant, while for the macroscopic case,
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the buckling strain agreed with the results of Rosen (1965).
Triantafyllidis and Maker (1985) analyzed the onset of instability in
finitely deformed periodic layered composites. They demonstrated the
existence of the microscopic and macroscopic (or long wave) in-
stabilities by employing the Bloch-Floquet analysis (Geymonat et al.,
1993), along with the loss of ellipticity analysis that is typically used to
detect the onset of macroscopic instability (Merodio and Ogden, 2005,
2003, 2002). Nestorovic and Triantafyllidis (2004) investigated the
interplay between macroscopic and microscopic instability of hyper-
elastic layered media subjected to combinations of shear and com-
pression deformation. Micromechanics based homogenization was uti-
lized to predict the macroscopic instability of transversely isotropic
fiber composites with hyperelastic phases (Agoras et al., 2009; Rudykh
and Debotton, 2012). Recently, Gao and Li (2017) showed that the
wavy patterns of the interfacial layer could be tuned by the interphase
between the interfacial layer and soft matrix. Slesarenko and Rudykh
(2017) implemented the Bloch-Floquet technique into the finite ele-
ment based code and examined the macroscopic and microscopic in-
stability of periodic hyperelastic 3D fiber composites. More recently,
Galich et al. (2018) focused on the influence of the periodic fiber dis-
tribution on instabilities and shear wave propagation in the hyper-
elastic 3D fiber composites. Furthermore, the microscopic and macro-
scopic instability phenomena of multi-layered composites under plane
strain conditions were observed in experiments via 3D-printed layered
materials (Li et al., 2013). Slesarenko and Rudykh (2016) experimen-
tally showed that the wavy patterns in LCs with visco-hyperelastic
constitutes could be tuned by the applied strain rate. Li et al. (2018a)
experimentally realized the instability development in periodic 3D fiber
composites. Through these studies, the role of stiff fiber reinforcement
on the stability of composites has been well understood; in particular,
the composites with stronger reinforcement (with higher shear modulus
contrasts or with larger fiber volume fractions) are more prone to in-
stabilities. However, the role of phase compressibility on the instability
development and post-buckling behavior of hyperelastic laminates has
not been examined.

In the first part of our paper, we will focus on the influence of phase
compressibility on the onset of instability and critical wavelengths that
define the postbuckling patterns of the microstructure. We note that it is
possible to use the estimates for the onset of instability and critical
wavelengths based on the linear elasticity theory (Li et al., 2013;
Rudykh and Boyce, 2014); this, however, does not fully account for the
nonlinear effects of finite deformations. To take into account these ef-
fects, we perform the instability analysis superimposed on finite de-
formations. The obtained information about the critical wavelengths is
further used in the analysis presented in the second part of the paper,
where the elastic waves in the postbuckling regime are analyzed.

Rytov (1956) derived explicit dispersion relations for elastic waves
propagating perpendicular to the layers showing the existence of the
elastic wave BGs (or stop bands) in LC frequency spectrum. Wu et al.
(2009), and Fomenko et al. (2014) investigated the elastic wave BGs of
layered media with functionally graded materials. Recently, Srivastava
(2016) predicted the appearance of negative refraction at the interface
between layered composite media and homogeneous material. More
recently, Slesarenko et al. (2018) showed that negative group velocity
can be induced by deformation in hyperelastic composites in the stable
regime near elastic instabilities. Galich et al. (2017a) obtained explicit
expressions for shear and pressure long waves in finitely deformed LCs
with isotropic hyperelastic phases. Moreover, based on the analysis by
Rytov (1956), Galich et al. (2017a) extended the classical results to the
class of finitely deformed hyperelastic laminates. In particular, Galich
et al. (2017a) show that the shear wave BGs are independent of the
applied deformation in neo-Hookean laminates. In addition, the results
of Galich et al. (2017a) demonstrate that the pressure wave BGs can be
tuned by deformation, mostly via the change in the thickness of the
layers. In this work, we examine the elastic wave propagation in finitely
deformed neo-Hookean laminates in the postbuckling regime, and we

specifically focus on the influence of material compressibility.
The paper is structured as follows: Section 2 presents the theoretical

background for finite elastic deformation and small amplitude motions
superimposed on the finitely deformed state. The numerical simula-
tions, including the procedures to detect the onset of instability and
perform postbuckling analysis, are described in Section 3. The results
are presented in Section 4, which is divided into two subsections.
Section 4.1 is devoted to the analysis of the influence of the constituent
compressibility on the onset of instability; and Section 4.2 presents the
analysis of elastic wave propagation in finitely deformed compressible
LCs in the postbuckling regime. Section 5 concludes the study with a
summary and discussion.

2. Theoretical background

Consider a continuum body and identify each point in the un-
deformed configuration with its position vector X. When the body is
deformed, the new location of the corresponding point is defined by
mapping function = tx χ X( , ). The deformation gradient is defined by

= ∂ ∂F x X/ and its determinant is = >J Fdet( ) 0. For hyperelastic ma-
terials whose constitutive behaviors are described in terms of strain
energy density function W F( ), the first Piola-Kirchhoff stress tensor is
given by

= ∂
∂

WP F
F
( ) . (1)

In the absence of body forces, the equations of motion can be
written in the undeformed configuration as

= ρ D
Dt

P χDiv ,0

2

2 (2)

where Div(•) represents the divergence operator in the undeformed
configuration, D Dt(•)/ is the material time derivative, and ρ0 denotes
the initial material density. When deformation is applied quasi-stati-
cally, Eq. (2) reads

=PDiv 0. (3)

Next we consider small amplitude motions superimposed on an
equilibrium state (Destrade and Ogden, 2011; Ogden, 1997). The
equations of the incremental motion are

= ρ D
Dt

P uDiv ˙ ,0

2

2 (4)

where Ṗ is an incremental change in the first Piola-Kirchhoff stress
tensor and u is an incremental displacement. The incremental change in
deformation gradient is given by

=F u˙ Grad , (5)

where Grad (•) represents the gradient operator in the undeformed
configuration.

The linearized constitutive law can be expressed as

A=P F˙ ˙ ,ij ijkl kl0 (6)

whereA = ∂ ∂ ∂W F F/ijkl ij kl0
2 is the tensor of elastic modulus. Substitution

of Eqs. (5) and (6) into Eq. (4) yields

A
∂

∂ ∂
=u

X X
ρ D u

Dt
.ijkl

k

j l

i
0

2

0

2

2 (7)

In the updated Lagrangian formulation, Eq. (7) reads

A
∂

∂ ∂
= ∂

∂
u

x x
ρ u

t
,ijkl

k

j l

i
2 2

2 (8)

where A A= −J F Fipkq ijkl pj ql
1

0 and = −ρ J ρ1
0.
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3. Numerical simulation

We consider periodic layered composites consisted of two alter-
nating hyperelastic phases with initial volume fractions =v d d/a a and

= −v v1b a (see Fig. 1(a)). Here and thereafter, the quantities corre-
sponding to phase a and phase b are denoted by subscripts (•)a and (•)b,
respectively. The constitutive behavior of each phase is defined through
the extended neo-Hookean strain energy density function

⎜ ⎟= − − + ⎛
⎝

− ⎞
⎠

−W
μ

μ J
K μ

JF F F( )
2

( : 3) ln( )
2 3

( 1) ,ξ
ξ

ξ ξ ξ ξ
ξ ξ

ξ
2

(9)

where μξ is the initial shear modulus, Kξ is the bulk modulus, subscript
ξ stands for a or b. The compressibility of the material is defined by the
ratio K μ/ξ ξ .

In order to detect the onset of instability of LCs, and obtain the
corresponding critical stretch ratio λcr and critical wavelength lcr (or
critical wavenumber kcr), the Bloch-Floquet analysis is used (for details,
see Slesarenko and Rudykh, 2017; Triantafyllidis and Maker, 1985).
The microscopic instability is associated with the existence of bifurca-
tion at a non-zero critical wavenumber k ,cr which defines the buckling
mode of the structure through the critical wavelength =l k2π/cr cr . The
specific case of so-called long wave mode, →k 0cr , can be detected by
the loss of ellipticity analysis for the effective elastic modulus tensor.
The obtained information about the critical wavelengths is used in the
subsequent postbuckling analysis (and elastic wave propagation in the
postbuckling regime). A unit cell with height =h lcr is constructed in
the finite element model, and small amplitude imperfections are in-
troduced in the form of = ( )X A cos X

h1 0
2π 2 imposed on the initial geo-

metry of the stiffer layer (see Fig. 1(b)). In particular, through checking
different weights ( dA / a0 ) of the imperfections, we find that

= −dA / 10a0
3 is proper to trigger bifurcation and enough precise to

capture the development of the instability induced wavy patterns. The
periodic boundary conditions of displacement are imposed on the unit
cell, and the mechanical loading is applied in terms of average de-
formation gradient, which is used in the displacement imposed periodic
boundary conditions on the unit cell (see Fig. 1(b)). The obtained nu-
merical solution for the finitely deformed state is used in the subsequent
small amplitude wave propagation analysis. This has been done by
employing the Bloch wave numerical analysis (implemented in the fi-
nite element code, for details, see Bertoldi and Boyce, 2008a; Galich
et al., 2017b; Slesarenko and Rudykh, 2017; Li et al., 2018b). Thus, the
dispersion curves for elastic waves propagating in finitely deformed
compressible LCs are obtained.

4. Results

4.1. Instability

We start from consideration of the influence of compressibility on
the onset of instability and the corresponding critical wavelengths.
Fig. 2 shows the dependence of critical stretch ratio λcr (a, c) and cri-
tical wavenumber k͠ cr (b, d) on the compressibility of LCs with neo-

Hookean phases. Both phases are characterized by identical compres-
sibility = =K μ K μ K μ( / / / ).a a b b The critical wavenumber is normalized
as =k k d/(2π)͠ cr cr . For completeness, we show also the linear elastic
material estimates denoted by the short-dashed black (Rosen, 1965)
and by dotted blue curves (Parnes and Chiskis, 2002).1 The circular
points denote the numerical results for LCs with neo-Hookean phases.
Hollow and solid symbols correspond to microscopic and macroscopic
instabilities, respectively. Note that we also add the curves connecting
the symbols, and these curves do not represent the actual data, but
indicate the trends in the dependencies only.

Compressible LCs are observed to be more stable; in particular, the
critical stretch ratio increases with a decrease in compressibility (an
increase in K μ/ ), see Fig. 2 (a, c). This stabilizing effect may be due to
the additional freedom in accommodating deformation in compressible
LCs as compared to the constrained incompressible LCs. The linear es-
timates and nonlinear analysis predict similar trends of the dependence
of critical stretch on compressibility. However, the nonlinear analysis
predicts earlier onsets of instabilities. Moreover, for composites with
lower stiffness ratio, significant differences in linear and nonlinear
predictions of critical wavenumber are observed (see Fig. 2(d)). The LCs
with lower shear modulus contrasts require larger deformation for
onset of instability; therefore, the nonlinear behavior (not accounted in
the linear estimates) becomes more prominent.

Remarkably, compressible LCs are found to develop instabilities on
microscopic length-scales, while LCs with higher incompressibility
(larger K μ/ ) buckle in the long wave mode. For example, in LC with

=μ μ/ 100a b , we observe a switch in buckling modes from microscopic
instability to macroscopic instability indicated by the void (micro-
scopic) and filled (macroscopic) red circles in Fig. 2(a and b). Similar
transitions from microscopic to macroscopic instability modes in in-
compressible fiber composites happen when the shear moduli contrast
is increased beyond a certain threshold value (Slesaranko and Rudykh,
2017). For compressible LCs, the observed macro-to-micro mode switch
(at certain threshold compressibility value) may be attributed to the
compressibility-induced reduction in the effective stiffness ratio be-
tween the phases; thus, leading to the development of microscopic in-
stabilities. Finally, we note that the critical stretch ratio of neo-Hookean
LCs attains the analytical estimation for incompressible neo-Hookean
LCs (Triantafyllidis and Maker, 1985) as the incompressibility para-
meter is increased.

Next, we examine the influence of compressibility on instabilities in
LCs with different volume fractions. Fig. 3 shows the critical stretch
ratio λcr (a) and normalized critical wavenumber k͠ cr (b) as functions of
compressibility for LCs with =μ μ/ 100a b . The square, triangle, and
circle symbols correspond to the LCs with =v 0.04, 0.07,a and 0.09,
respectively. The black points correspond to the results of LCs with
identical phase compressibility, while the red points correspond to LCs
with nearly incompressible matrix ( =K μ/ 10b b

3), and stiffer layers with

Fig. 1. (a) Periodic LCs, (b) Deformed unit cell, (c) Small amplitude wave propagation in the deformed unit cell.

1 The compressibility of linear elastic material is related to that of neo-
Hookean material by Poisson's ratio = −

+ν K μ
K μ

3 / 2
6 / 2 .
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varying compressibility. Note that we consider the range of ≥K μ/ 2/3,
such that the initial Poisson's ratio is positive (Shang and Lakes, 2007).
Fig. 3(a) shows that the critical stretch ratio increases with a decrease in
compressibility (an increase in K μ/ ). Note that LCs with ≳K μ/ 50,
critical stretch changes only slightly with an increase in K μ/ . However,
for LCs with ≲K μ/ 10, a decrease in compressibility (an increase in
K μ/ ) results in a pronounced increase in critical stretch. For example,
when compressibility of LC (with identical phase compressibility) is

changed from =K μ/ 50 to 103, critical stretch of LC with =v 0.04a in-
creases from =λ 0.9627cr to only 0.9628; whereas, a decrease in com-
pressibility from =K μ/ 2/3 to 10 leads to an increase in critical stretch
from =λ 0.9475cr to 0.9616. Fig. 3(b) shows the dependence of critical
wavenumber k͠ cr on the ratio of K μ/ . We observe that the critical wa-
venumber decreases with a decrease in compressibility (i.e. increase in
K μ/ ), the effect is more pronounced at the range of ≲K μ/ 10. We note
that the LC with =v 0.09a exhibits a transition from finite wavelength

Fig. 2. Dependence of critical stretch ratio λcr (a, c) and critical wavenumber k͠ cr (b, d) on the compressibility of LCs with = =v K μ K μ0.09, / /a a a b b. Hollow symbols
correspond to microscopic instabilities, while solid symbols correspond to macroscopic instabilities.

Fig. 3. Dependence of critical stretch ratio λcr (a) and critical wavenumber k͠ cr (b) on the compressibility of LCs with =μ μ/ 100a b . The black points correspond to LCs
with identical compressibility; the red points correspond to LCs with nearly incompressible =K μ( / 10b b

3) soft matrix. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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mode to long wave instability mode at ≈K μ/ 3.5 for LCs with identical
phase compressibility, ≈K μ/ 1.1 for LCs with nearly incompressible
matrix and varying stiff layer compressibility, corresponding to a switch
from microscopic instability to macroscopic instability.

For LCs with nearly incompressible matrix ( =K μ/ 10b b
3), the in-

fluence of the stiffer layer compressibility on critical stretch ratio and
wavenumber is more pronounced as compared to LC with identical
phase compressibility (compare the red symbols with the black symbols
in Fig. 3(a and b)). For example, for LC with =v 0.07a , the change in
compressibility of the stiffer layer from =K μ/ 10a a

3 to 2/3, leads to the
changes in critical stretch ratio from =λ 0.965cr to 0.941, and critical
wavenumber from =k 0.64͠ cr to 1.00. For LCs with identical phase
compressibility, the same change in compressibility decreases the cri-
tical stretch ratio from =λ 0.965cr to 0.948, and increases the critical
wavenumber from =k 0.64͠ cr to 0.90. One of the factors for the ob-
served differences can be attributed to the change in the volume frac-
tion of the stiffer layer under compression. For LCs with identical
compressibility ( =K μ K μ/ /a a b b), the volume fraction of the stiffer layer
is constant under contraction deformation (before the onset of in-
stability). However, for LCs with nearly incompressible soft matrix and
compressible stiff layers, the stiffer layer volume decreases under con-
traction deformation and the volume of the matrix remains constant.
Thus, the volume fraction of the stiffer layer (in the deformed state)
decreases. As a result, LCs with more compressible stiffer layers (with
lower K μ/a a) buckle at larger strain levels, and develop wavy patterns of
smaller wavelengths as compared to LCs with identical phase com-
pressibility. However, the dependence of the wavelength on the stiffer
layer compressibility changes for LCs with larger volume fractions, for
which LCs may exhibit long wave instabilities (depending on the
compressibility).

For LCs with identical phase compressibility, an increase in stiff
layer volume fraction results in significant decrease in critical strain
( = −ε λ1cr cr) and critical wavenumber. For example, for LC with
nearly incompressible phases ( = =K μ K μ/ / 10 )a a b b

3 , an increase in stiff
layer volume fraction from =v 0.04a to 0.09 leads to an earlier onset of
instabilities at =ε 0.029cr ( = =ε v0.037 for 0.04)cr

a , and leads to a
switch in the instability mode from finite size =k 1.45͠ cr (for =v 0.04a )
to long wave mode ( →k 0͠ cr for =v 0.09a ).

Next we investigate the influence of compressibility on instabilities
in LCs with different shear modulus contrasts. Fig. 4 shows the de-
pendence of critical stretch ratio (a, c, e) and critical wavenumber (b, d,
f) on compressibility. The circular, square, and triangle symbols cor-
respond to the results of LCs with shear modulus contrasts

=μ μ/ 20, 100,a b and 500, respectively. The black and red points cor-
respond to LCs with identical phase compressibility, and to LCs with
nearly incompressible matrix ( =K μ/ 10b b

3) and stiffer layer with
varying compressibility, respectively. In agreement with the previous
results, here we observe that the critical stretch ratio increases with a
decrease in compressibility (i.e. increase in K μ/ ), and the critical wa-
venumber decreases with a decrease in compressibility (i.e. increase in
K μ/ ). We observe that the critical strain for LC with lower shear
modulus contrast is more sensitive to a change in compressibility. The
compressibility has a more significant effect on the critical wavenumber
of LC with higher shear modulus contrast. For instance, for LC with

=μ μ/ 20a b , the change of compressibility from = =K μ K μ/ / 10a a b b
3 to

2/3, leads to the changes in critical strain from =ε 0.105cr to 0.163, and
critical wavenumber from =k 2.18͠ cr to 2.57; thus the critical strain and
wavenumber increase 55.24% and 17.89%, respectively. For LC with

=μ μ/ 500a b , the corresponding change in compressibility (from
= =K μ K μ/ / 10a a b b

3 to 2/3) leads to an increase in critical strain and
wavenumber by 36.80% and 31.62%, respectively.

In addition, we also observe that an increase in the stiffer layer
compressibility leads to a more significant increase in critical strain and
wavenumber as compared to LC with identical phase compressibility in
a wide range of shear modulus contrasts. This effect increases with an
increase in shear modulus contrast (compare red and black symbols in

Fig. 4). For instance, for the case of =μ μ/ 500a b , the critical strain and
wavenumber for LC with identical phase compressibility =K μ/ 2/3 are

=ε 0.017cr and =k 0.96͠ cr ; and the critical strain and wavenumber for
LC with = =K μ K μ/ 2/3, / 10a a b b

3 are =ε 0.020cr and =k 1.08͠ cr , in-
creased by 17.65% and 12.5%, respectively (compared to LC with

=K μ/ 2/3). Whereas for the case of =μ μ/ 20a b , the critical strain and
wavenumber for LC with =K μ/ 10b b

3, =K μ/ 2/3a a increase by ap-
proximately 8% and 5%, respectively, when compared to the corre-
sponding LC with identical phase compressibility =K μ/ 2/3.

LCs with stiffer layers (higher shear modulus contrasts) are more
prone to instabilities, and develop buckling modes at smaller wave-
numbers (larger wavelength). For example, for LC with nearly in-
compressible phases, namely, = =K μ K μ/ / 10a a b b

3, the composite with
=μ μ/ 20a b and 100 buckles at =ε 0.106cr to 0.037, and develops wavy

pattern at =k 2.18͠ cr to 1.45, respectively.
To summarize, LCs with stronger role of stiffer layers are more

prone to instabilities and develop buckling modes with larger wave-
lengths. Compressible LCs are found to be more stable thanks to the
additional freedom in accommodating deformation as compared to the
constrained incompressible LCs. There are compressibility-controlled
switches in the LC buckling modes from macroscopic to microscopic
instabilities. These switches may be a result of reduction in effective
stiffness ratio between the phases arising from the deformation of
compressible LC. Moreover, LCs with nearly incompressible matrix are
more stable than the LCs with identical phase compressibility. This
stabilizing effect can be attributed to a decrease in the compressible
stiffer layer volume fraction (while the volume of nearly incompressible
matrix remains almost constant).

4.2. Elastic waves in finitely deformed compressible laminates

Next, we consider elastic waves propagating in finitely deformed
LCs in the direction perpendicular to the layers. For this case, Galich
et al. (2017a) extended the results of Rytov (1956) to account for the
effect of finite deformation on elastic wave propagation. The explicit
results for neo-Hookean LCs by Galich et al. (2017a) clearly show that
band gaps (BG) – frequency ranges where waves cannot propagate – of
shear waves do not depend on deformation. This is because the de-
formation induced changes in geometries and local material properties
compensate each other. However, once the deformation exceeds the
critical stretch ratio, the stiffer layers develop wavy patterns and de-
formation becomes inhomogeneous in the phases. Therefore, the ana-
lytical solution – that assumes that the layers remain flat and de-
formation is homogeneous in each layer – reaches the limits of
applicability. To overcome this limit and analyze the influence of
compressibility on elastic wave propagation in finitely deformed com-
pressible LCs, we make use of the finite element Bloch wave analysis
superimposed on large deformations (Bertoldi and Boyce, 2008a,
2008b).

We start with illustrating the dispersion curves of the undeformed
and deformed ( =λ 0.9) LCs. The dispersion curves shown in Fig. 5 are
for LC with = = = = =v μ μ ρ ρ K μ K μ0.04, / 100, / 1, / / 1a a b a b a a b b . The
continuous curves correspond to shear waves, while the dashed curves
are for pressure waves. The shaded grey and blue areas correspond to
the shear wave band gaps (SBGs) and pressure wave band gaps (PBGs),
respectively. Frequency is normalized as = ∼f ρ μ/n

ωd
π2 0 , where ω is the

angular frequency, = +ρ ρ v ρ v ,a a b b0 0 0 = +∼ −( )μ v
μ

v
μ

1
a

a

b

b
. We note that

the numerical results are in perfect agreement with the theoretical re-
sults (Galich et al., 2017a; Rytov, 1956) for the range of deformations,
where the LCs remain stable. In the buckled deformed state at =λ 0.9
( =λ 0.9514cr ), the first SBG widens from =fΔ 0.020n (in the un-
deformed state) to 0.024, and its upper boundary shifts from =f 0.510n
to 0.524, the first PBG widens from =fΔ 0.031n (in the undeformed
state) to 0.032 and its upper boundary shifts from =f 0.779n to 0.767.

Next, we investigate the influence of deformation on the BG
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structure of nearly incompressible LCs. Fig. 6 shows evolutions of the
first SBG (a) and wrinkle amplitude (b) as functions of deformation. The
wrinkle amplitude is normalized as =∼A d

A
a
. The LC with

= = =v μ μ ρ ρ0.04, / 100, / 1a a b a b consists of nearly incompressible
phases ( = =K μ K μ/ / 10a a b b

3), and it experiences microscopic in-
stability at =λ 0.963cr with the critical wavenumber =k 1.45͠ cr . To
highlight the effect of instability induced wavy patterns on SBG, we
show the results for the buckled LC and the flat LC (in which the wavy
patterns are suppressed) under the same deformation. The analytical
results (Galich et al., 2017a) for the first SBG of LC with flat layers is
located at lower frequency boundary =f 0.490n and width =fΔ 0.020n ,
which is independent of deformation. Before the onset of instability
( =λ 0.963cr ), the wavy pattern amplitude is negligible (see Fig. 6(b)),

and LCs produce identical SBGs (see Fig. 6(a)). After the onset of in-
stability, the LC develops wavy patterns, and the amplitude of wrinkles
rapidly increases with an increase in deformation (see Fig. 6(b)). The
appearance of the wavy patterns shifts up the location of SBG and ex-
pands its width. The effect is more significant for the upper frequency
boundary of the BG. For example, the deformation of =λ 0.9 widens the
SBG from =fΔ 0.020n to 0.029 and shifts its upper frequency boundary
from =f 0.510n to 0.520. We note that for the considered nearly in-
compressible LC ( =K μ/ 103), PBGs are located at relatively high fre-
quency ranges (compared to the first SBG). For example, according to
the calculation that based on the results of Galich et al. (2017a), the
lower boundary of the first SBG for considered LC in the undeformed
state is =f 0.490n (with =fΔ 0.020n ), while the lower boundary of the

Fig. 4. Dependence of critical stretch ratio λcr ((a), (c), and (e)) and critical wavenumber k͠ cr ((b), (d), and (f)) on the compressibility of LCs with =v 0.04a .

Fig. 5. Dispersion relations for shear (black continuous curves) and pressure (black dashed curves) waves in LC with
= = = = =v μ μ ρ ρ K μ K μ0.04, / 100, / 1, / / 1a a b a b a a b b in undeformed (a) and deformed (b) states. The shaded areas correspond to the shear (grey) and pressure

(blue) wave BGs. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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corresponding first PBG is =f 15.51n (with =fΔ 0.63n ). The numerical
investigation of PBGs in LCs with nearly incompressible phases requires
a large number of calculated eigenfrequencies and is not considered
here.

To illustrate the influence of deformation in compressible LCs, we
show SBG (a), PBG (b), and wrinkle amplitude (c) as functions of de-
formation in Fig. 7. The results are given for the LC with

= = = = =v μ μ ρ ρ K μ K μ0.04, / 100, / 1, / / 1.a a b a b a a b b The considered
LC experiences microscopic instability at =λ 0.951cr with the critical
wave number =k 1.60͠ cr . For the SBG (shown in Fig. 7(a)), we observe
that the appearance of the wavy patterns leads to widening of the SBG.
Moreover, the SBG is shifted towards higher frequency range after the
applied deformation attains the critical stretch level; a further increase
in strain level (decrease in stretch ratio) leads to an increase in the
width of the SBG. In particular, the applied deformation of =λ 0.9
widens the SBG from =fΔ 0.020n to 0.023 and shifts its upper frequency
boundary from =f 0.510n to 0.514. Thus, for highly compressible LCs,
the influence of instability induced wavy patterns on the widths of SBGs
is weaker than the one in nearly incompressible LCs (shown in
Fig. 6(a)). This happens because an increase in compressibility (de-
crease in K μ/ ) leads to a decrease in wavy pattern amplitude. For ex-
ample, the amplitudes in LCs with nearly incompressible
( = =K μ K μ/ / 10a a b b

3) and highly compressible phases
( = =K μ K μ/ / 1a a b b ) at the deformation of =λ 0.9 are =∼A 1.36 and
1.10, respectively.

For PBG (shown in Fig. 7(b)), the LCs with wavy patterns and flat
layers produce almost identical PBGs for the range of deformation prior
to the onset of instability ( =λ 0.951cr ). After the onset of instability,
however, the instability induced wavy patterns widen the PBG and shift
it towards higher frequency range. This effect is more significant on the

upper frequency boundary of PBG. For example, compared to the LC
with flat layers, the PBG of LC with wavy patterns widens from

=fΔ 0.030n to 0.032 and its upper frequency boundary shifts from
=f 0.764n to 0.767 at the deformation of =λ 0.9. This is similar to the

previous results for SBGs (see Fig. 6(a), Fig. 7(a)).
Fig. 8 shows the dependence of SBG (a), PBG (b), and wrinkle

amplitude (c) on the compressibility parameter K μ/ . The results are
given for LCs with = = =v μ μ ρ ρ0.04, / 100, / 1a a b a b subjected to a
contraction deformation of =λ 0.9. For LCs with flat layers, we observe
that compressibility does not affect the SBGs (see Fig. 8 (a)) – in full
agreement with the analytical results2 of Galich et al. (2017a). For LCs
with wavy patterns, however, we observe that the SBGs are widened
and the SBG locations are shifted towards higher frequency ranges. This
effect increases with a decrease in compressibility (i.e. increase in K μ/ ).
For example, when the compressibility changes from =K μ/ 0.67 to 103,
the width of SBG of LC with identical compressibility increases from

=fΔ 0.023n to 0.029. This is due to the fact that an increase in K μ/ leads
to an increase in wrinkle amplitude (see Fig. 8(c)). Moreover, we note
that LCs with identical phase compressibility show larger wrinkle am-
plitudes as compared to LCs with nearly incompressible matrix (see
Fig. 8(c)). However, LCs with nearly incompressible matrix show more
significant widening of SBGs (Fig. 8(a)). This indicates that the tun-
ability of the SBG is governed by a complicated interplay of the local
material property and geometry changes; these effects are discussed
below along with the illustrations in Fig. 10.

Fig. 6. Dependence of SBG (a) and wrinkle amplitude (b) on applied deformation for LC with = = =v μ μ ρ ρ0.04, / 100, / 1a a b a b , = =K μ K μ/ / 10a a b b
3.

2 The change in geometry induced by deformation is fully compensated by
the corresponding change in material properties in neo-Hookean laminates with
compressible and incompressible phases.
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For PBGs in highly compressible LCs, we observe that the instability
induced wavy patterns expand the widths and shift their locations to
higher frequency ranges (as compared to the LCs with flat layers). For
example, for LC with =K μ/ 0.67, the appearance of wavy patterns ex-
pands the width of PBG from =fΔ 0.028n to 0.031 and shifts its upper
frequency boundary from =f 0.721n to 0.724. Whereas with the de-
crease of compressibility (i.e. increase in K μ/ ), the effect of wavy pat-
terns on PBG gradually changes from expanding the BG width and
shifting its location to higher frequency range, to narrowing the BG
width and shifting its location to lower frequency range (see Fig. 8 (b)).
For example, for LC with =K μ/ 10, the wavy patterns narrow the width
of PBG from =fΔ 0.062n to 0.058, and shift its upper frequency
boundary from =f 1.565n to 1.559. For the considered cases, the tran-
sition point at which the effect of wavy patterns on PBGs changes from

expanding to narrowing the BG widths is at ≈K μ/ 4. We note that for
the considered LCs with nearly incompressible soft matrix
( =K μ/ 10b b

3), PBGs are located at relatively high frequency ranges
(compared to the first SBG). Thus, numerical investigation of PBGs in
LCs with nearly incompressible soft matrix requires a large number of
calculated eigenfrequencies and is not considered here.

Next, we examine the so-called complete BGs where neither shear
nor pressure waves can propagate. Fig. 9 show the dependence of SBG
and PBG on the compressibility for LCs with

= = =v μ μ ρ ρ0.04, / 100, / 1a a b a b in the undeformed and deformed
buckled ( =λ 0.9 shown in Fig. 9(b)) states. The shaded gray, blue, and
black areas correspond to the shear wave, pressure wave, and complete
BGs, respectively. In the undeformed state, the compressibility has no
influence on SBGs. In the buckled deformed state, however, the

Fig. 7. Dependence of SBG (a), PBG (b), and wrinkle amplitude (c) on applied deformation for LC with = = = = =v μ μ ρ ρ K μ K μ0.04, / 100, / 1, / / 1a a b a b a a b b .
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locations of SBGs shift slightly, but the locations of PBGs are sig-
nificantly shifted towards lower frequency ranges; this is similar to the
observations in Figs. 7 and 8. Consequently, deformation can induce
complete BG in a specific frequency range while the undeformed LCs do
not produce complete BG in that frequency range. For example, for LC
with =K μ/ 3.5, we observe the complete BG in the frequency range
from =f 1.002n to 1.028, but there is no complete BG in this frequency
range for the same LC in the undeformed state.

Finally, we examine the influence of deformation induced geome-
trical changes on band gaps. To this end, we analyze the evolution of
BGs in stress-free configurations with the corresponding geometrical
changes; and we compare these to the results for the deformed con-
figurations (accounting for both geometrical and local material prop-
erty changes). Fig. 10 shows the SBGs (a) and PBGs (b) of the deformed
LC and stress-free LC (with the corresponding geometrical change only)
as functions of stretch ratio. The results are given for LC with

= = = = =v μ μ ρ ρ K μ K μ0.04, / 100, / 1, / / 5f a b a b a a b b . The LC ex-
periences the microscopic instability at =λ 0.960cr with the critical
wavenumber =k 1.48͠ cr . Prior to the onset of instability ( =λ 0.960cr ),
the geometrical changes shift the SBG towards lower frequencies (see
Fig. 10(a)). This effect however, is fully compensated by the

corresponding deformation induced changes in local material proper-
ties (Galich et al., 2017a). Thus, the SBG of the deformed LC are in-
dependent of the applied deformation in the stable regime. However,
upon the onset of instability, the SBG widens as the applied deformation
is further increased. At this post-buckling regime, the corresponding
SBG of the stress-free LC also widens with deformation. However, the
width of the actual SBG (in the deformed LC) is smaller than that of the
stress-free LC. Moreover, the actual SBG is shifted towards higher fre-
quencies, whereas the geometrical changes push the SBG down towards
lower frequencies. Thus, the instability induced changes in local ma-
terial properties start prevailing over the geometrical changes in their
influence on the SBG.

Next, we consider PBGs in the deformed and stress-free LCs. The
PBGs are shifted towards lower frequencies. The location of the PBG of
the deformed LC is lower than that of the stress-free LC (see Fig. 10(b)).
Therefore, we can conclude that both geometrical and local material
changes shift down the location of PBG. Compared to the PBG in the
undeformed state (the corresponding PBG width is =fΔ 0.051n ), the
PBGs of the stress-free and deformed LCs are =fΔ 0.053n and 0.045 (at

=λ 0.9), respectively. Thus, the deformation induced changes in local
material property narrow the width of PBG. We note that the

Fig. 8. Dependence of SBG (a), PBG (b), and wrinkle amplitude (c) on the compressibility of LCs with = = =v μ μ ρ ρ0.04, / 100, / 1a a b a b under deformation of
=λ 0.9.

Fig. 9. Dependence of BG on the compressibility of LCs with = = =v μ μ ρ ρ0.04, / 100, / 1a a b a b in the undeformed (a) and deformed (b) states.
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geometrical changes play a more significant role in affecting the loca-
tion of PBG. For example, applied deformation of =λ 0.9 shifts the
lower frequency boundary of the PBG of stress-free unit cell from

=f 1.233n (undeformed state) to 1.150, whereas the same deformation
shifts the lower frequency boundary of the PBG of the deformed unit
cell from =f 1.233n (undeformed state) only to 1.137.

In summary, the instability induced wavy patterns results in tun-
ability of the widths and locations of SBGs (that are not tunable by
deformation in LCs with neo-Hookean phases in the stable regime); this
tunability, however, is not significant in comparison to the tunability of
the PBGs (mainly through deformation induced changes in layer
thickness), leading to the tunability of complete BGs (where neither
shear nor pressure wave can propagate) by deformation.

5. Conclusions

We have examined the elastic instability and wave propagation in
finitely deformed LCs with compressible neo-Hookean phases. The LCs
with stronger role of stiffer layers (higher stiffness ratio and/or stiffer
layer volume fraction) buckle earlier and develop buckling modes at
smaller wavenumbers (larger wavelengths). Compressible LCs, how-
ever, are more stable and develop wavy patterns at smaller wave-
lengths. This stabilizing effect of compressibility may be attributed to
the additional freedom to accommodate deformation as compared to
the constrained incompressible LCs. We also observed the compressi-
bility-controlled switches in the LC buckling modes from macroscopic
to microscopic instabilities. These switches may be because applied
deformation on compressible LC leads to a reduction in effective stiff-
ness ratio between the phases. Moreover, LCs with identical phase
compressibility are more prone to onset of instabilities as compared to
the composites with nearly incompressible matrix, this happens because
the contraction deformation results in a decrease in the stiffer layer
volume fraction for LCs with nearly incompressible matrix.

Next, we have examined the elastic wave propagation in finitely
deformed LCs in the direction perpendicular to the layers. We have
found that the instability induced wavy patterns lead to widening of the
SBG (mostly driven by the deformation induced geometrical changes),
and shifts it towards higher frequency range (mostly driven by the
deformation induced changes in local material property). Deformation
significantly shifts the location of PBG to lower frequencies – mainly
through the corresponding deformation induced changes in layer
thickness – in addition to some tunability in the width of the PBG.
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