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Abstract: The following is a study of the performance of soft cable-driven polymer actuators produced
by multimaterial 3D printing. We demonstrate that the mechanical response of the polymer actuator
with an embedded cable can be flexibly tuned through the targeted selection of actuator architecture.
Various strategies, such as the addition of discrete or periodic stiff inserts, the sectioning of the
actuator, or the shifting of the cable channel are employed to demonstrate ways to achieve more
controllable deformed shape during weight lifting or reduce the required actuation force. To illustrate
these concepts, we design and manufacture a prototype of the soft polymer gripper, which is capable
of manipulating small, delicate objects. The explored strategies can be utilized in other types of soft
actuators, employing, for instance, actuation by means of electroactive polymers.

Keywords: polymer actuator; soft robotics; soft machines; 3D printing; cable-driven actuation;
gripper; soft composites; digital materials

1. Introduction

On par with conventional robots, which are made of metals and plastics and are capable of
lifting heavy weights or assembling cars and planes in factories, new types of so-called “soft”
polymer-based robots made of more delicate materials have gained considerable attention from
scientific and engineering communities in the last two decades [1]. Currently, soft robots are not
able to compete with conventional rigid robotic systems on the classical playing fields of weight
lifting, fast movement, or robust response; however, they are making drastic contributions to other
existing and newly emerging fields, such as medicine, food engineering, and robot-human interaction,
among others [2]. Due to fundamentally new concepts, soft continuous robots and machines require a
revision of the conventional actuation and control principles [2,3].

Soft robots and machines may employ a variety of actuation mechanisms, such as cable-driven
actuation (CDA) [4], pneumatic actuation (PA) [5], or actuation based on electroactive polymers
(EAPs) [6–8]. The detailed list of possible actuation mechanisms is presented in [9]; however,
the three above-mentioned approaches are the most widely spread. EAPs can be divided into
electronic (e.g., dielectric elastomers) and ionic EAPs (e.g., ionic polymer gels or ionic polymer-metal
composites) [10]. In general, electronic EAPs require high actuation voltages, but they can produce
much larger strains and respond faster compared to ionic EAPs. The most pronounced disadvantage

Polymers 2018, 10, 846; doi:10.3390/polym10080846 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0003-2689-9918
https://orcid.org/0000-0001-6656-0631
https://orcid.org/0000-0002-3148-5165
http://www.mdpi.com/2073-4360/10/8/846?type=check_update&version=1
http://dx.doi.org/10.3390/polym10080846
http://www.mdpi.com/journal/polymers


Polymers 2018, 10, 846 2 of 14

of ionic EAPs, which outweighs their benefits, is their inability to work outside of aqueous media.
However, the requirement of constant hydration is not an obstacle for soft robotic systems that operate
in water, such as fish-like robots of diverse designs [8,9]. PA in soft robotics found widespread
application in the creation of pneumatic artificial muscles (PAMs) and pneumatic soft manipulators.
In the simple case, PAM represents a flexible, tubular structure with an empty chamber, which is filled
with air in order to contract or extend a muscle [11,12]. More complex pneumatic manipulators, such as
a tentacle-like soft robotic manipulator [13], consist of several sections and pressurized chambers to
maintain more accurate and flexible control over actuator shape. While usually such manipulators
demonstrate remarkable freedom of movement and large extension strains, they are not able to generate
large forces and are prone to buckling under compression loading. Another shortcoming that restricts
the applicability of PAMs is their need for compressed air. This requirement limits the sustainability of
such systems and their capability to miniaturize [14]. CDA relies on external or embedded motors,
whose motion is transferred to the structure via cables [4,15]. The main advantages of this mechanism
are the relative simplicity of control and good scalability. CDA is characterized by low additional
weight, fast response time, and long range transmission of force and power [16]. Moreover, CDA can
be coupled with other actuation mechanics in order to transfer forces to machine parts, where it is
challenging or ineffective to position a pneumatic chamber.

Since soft robots have infinite degrees of freedom by design, maintaining robust control over their
shape is a challenging task [1]. One way to solve this control problem is to use multiple actuators,
which can be triggered separately in order to achieve a desirable response from the manipulator.
For instance, 15 servomotors in a cable-driven octopus arm [15] can be actuated independently,
which enables precise control over the shape and movement of the tentacle. Using several pressurized
chambers that can be inflated independently, one can achieve very complex, controllable deformation
of pneumatic manipulators [13]. An alternative method of creating complex deformed shapes
(without the need of multiple actuators) is through the smart programming of geometry and the
choice of appropriate materials. With this approach, even simple actuation can lead to complex
deformation patterns and movement. For instance, additional inserts of inelastomeric material around
a soft silicone matrix with only a single pneumatic chamber can force a manipulator to respond to
pneumatic actuation with different modes of motion, including bending, contraction, and twisting [17].
Similarly, it was shown that by controlling the fiber angle in fiber-reinforced soft actuators, one can
control their movement, and it is possible to tailor the performance of the actuator for specific tasks by
combining various fiber arrangements in different sections of the actuator [11,18–21].

While soft manipulators containing only one actuator are relatively straightforward in design,
their manufacture usually requires multiple processes, such as molding, casting, lithography, etc.
This process can be significantly simplified due to the development of multi-material 3D printing,
in which complex geometry containing components made of different materials can be printed in one
step [22]. While additive manufacturing does not offer a wide variety of soft elastomeric materials
yet, some 3D-printable polymers with high extensibility and a low Young’s modulus are already
available for commercial 3D printing [23]. Besides commercially available materials, different types
of soft materials ranging from silicone to hydrogels were adopted in additive manufacturing [24].
With the development of 3D printing techniques, various designs of soft robots based on the
different types of actuation were produced [25]. Employing actuation by means of shape memory
polymers [26], ionic polymer-metal composites [27], or polyelectrolyte hydrogels [28], the printed
systems demonstrate a wide range of possible movements from simple bending [27] to sequential
folding into the desired shape [29]. Smart placement of soft and stiff parts in soft robots actuated by
shape memory wires [30], or gradient design in combustion-driven robots [31], were demonstrated
to be beneficial for robot operation. Therefore, targeted selection of materials and geometry not only
helps to create 3D-printed composites with enhanced properties [32–34], but it is the key to achieving
the desired performance of 3D-printed actuators [20,29,35–37]. In this manuscript, we employ
multimaterial 3D printing to manufacture simple soft actuators, driven by an embedded cable. In order
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to understand how composite geometry of the actuator defines the deformed shape, we explore
different geometrical and material inhomogeneities in the form of inserts, notches, and stiff tubular
elements. Based on our experimental observations, we design and realize a soft 3D printed gripper,
which is capable of gently holding and transporting small delicate objects. We emphasize that the main
goal of this study is to provide an overview of possible ways to control their performance through
smart selection of geometry and materials. The study does not represent a complete performance
characterization of the soft 3D-printed actuators. These observations can be expanded for the design
of soft devices with other actuation principles, such as pneumatic actuation or actuation by means of
active polymeric materials.

2. Materials and Methods

We employed a multi-material 3D printer Objet Connex 260 (Stratasys, Eden Prairie, MN,
USA) to fabricate soft actuators with different inelastomeric stiff inserts. This printer employs
the Polyjet printing technique for selective deposition of photopolymer droplets directly onto a
build tray. After deposition of each layer with minimal thickness of 30 µm and a pass of the roller
to even the top surface, two UV lamps cure the photopolymer. Since several printing heads can
be installed, up to three different photopolymers can be deposited independently during printing
(one additional head is reserved for hydrophobic support). Moreover, when one uses local mixing
of several photopolymers in one spot, a much wider range of materials with intermediate properties
becomes available. For instance, materials used in this study belong to the so-called Tango family
of materials and are formed as a mixture of soft TangoPlus (Stratasys, Eden Prairie, MN, USA) and
stiff VeroWhite (Stratasys, Eden Prairie, MN, USA) materials. Depending on the mass ratio of these
two base polymers, the resulting materials are characterized by different Shore indexes and Young’s
moduli. We should note that during transition from one material to another, a narrow mixing zone
is observed [38]; however, the width of this zone does not usually exceed 40 µm. At the same time,
mechanical tests on the macro [39] and micro [38] scales indicate that the bonding between materials
are stronger than the weaker base material. Therefore, while the mixing zone between materials
can have a slight influence on the macroscopic mechanical properties (especially for small details),
UV curing ensures a perfect adhesion between materials. No interfacial debonding was observed in
the present, or previous studies.

To produce the actuator, we first created CAD model with required geometry in SolidWorks
software (Dassault Systems, Waltham, MA, USA) (Figure 1a). In order to fix the actuator in the fixtures
for mechanical testing, we added two stiff parts on both of the ends of the soft body of the actuator.
After importing the CAD design to the printing software and assigning the proper materials to different
parts of the specimen, we started the printing process. We note that the Polyjet technique allows us
to print a whole actuator, containing several materials, in a single pass. Since jet printing does not
allow unsupported elements, the empty space in the cable channel was filled with support material.
After printing, the support material was scrupulously removed from the cable channel using a water
jet. Soft parts of actuators were printed with soft elastomeric materials (TangoPlus, FLX9760, FLX9785),
while stiff inserts and the ends of the actuators were printed in stiff VeroWhite material.

Printed actuators were mounted vertically into the fixtures, designed for the universal
testing machine Shimadzu EZ-LX (Shimadzu Corporation, Kyoto, Japan), as shown in Figure 1b.
Kevlar (DuPont, Wilmington, DE, USA) cable was passed through the cable channel and was connected
to a small tablet at one of the ends of the specimen, while another end of the cable was tied to the
top jig of the testing machine. During experiments, the top jig was moved up to retract the Kevlar
cable, thus inducing deformation of the actuator. The actuator was deformed until an approximate
90 degree angle was reached, and then unloaded until zero force was measured on the load cell.
The cable retraction length was measured by the vertical displacement of the top jig, while the whole
actuation process was tracked by a CCD camera. In a series of experiments, we added dead weight on
the free end of the actuators in order to estimate the actuator’s capacity to lift up additional weight.



Polymers 2018, 10, 846 4 of 14

The force applied to the top jig and the retraction of the cable were measured during the experiments.
Two small markers were placed on the cable in order to take into account the extension of the cable.
However, the cable extension was negligible, since Kevlar has a very high Young’s modulus.
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Figure 1. General geometry and dimensions of the actuator (a). The experimental setup for the
testing (b).

3. Results

In this work, we examine the following geometrical architectures (Figure 2), because, according to
our observations, they have the most significant effect on the general mechanical performance of the
actuator. In particular, we examine the influence of (i) cable channel position and channel-surrounding
material (a–c), (ii) discrete notches and stiff inclusions (d,e), and (iii) periodic stiff inclusions
(“scales”) (f).
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Figure 2. Geometry of the actuators with different channel positions and geometry. (a) Simple
homogeneous actuator with central channel, (b) with shifted channel, (c) with stiff tubular inserts
around channel, (d) with discrete notches, (e) with discrete stiff inserts, and (f) with periodic stiff
inclusions structure. Shown colors are chosen to be similar to real colors of the 3D-printed materials.
Yellow sections correspond to elastomeric material (TangoPlus, FLX9760 or FLX9785), while greyish
inserts correspond to stiff VeroWhite material.
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The considered actuators with square cross-sections are able to bend in two perpendicular
directions simultaneously due to the symmetry of the cross-section. In order to restrict bending
to one direction, we consider actuators with rectangular cross-sections. In this case, the flexural rigidity
of the actuator in two perpendicular directions is not the same, and therefore the actuator has a
well-defined bending direction. Hereafter, we solely focus on actuators with a rectangular cross-section
with aspect ratio 3:2 (see Figure 1a). This particular ratio was selected in order to maintain specific
bending direction, while still providing enough thickness to shift the position of the cable channel
inside the actuator.

As mentioned in the materials and methods sections, three different materials were used to
print the main part of the soft actuators, namely, TangoPlus ( E ∼ 0.6 MPa), FLX9760 ( E ∼ 3 MPa),
and FLX9785 ( E ∼ 20 MPa) [23]. Figure 3a shows the dependencies of the force, measured by load cell,
on the retracted cable length. The dependencies, shown in Figure 3a, are obtained for the homogeneous
actuator with a centered cable channel (Figure 2a). Clearly, the actuators printed with stiffer materials
require higher forces to achieve the same level of deformation. This aspect should be taken into account
in the case of engineering applications due to limited tensile strength of the cable or limited torque of
the motor. Figure 3a also reveals that loading and unloading curves do not match each other, and a
hysteresis loop is observed. This effect is caused by viscoelastic properties of base materials used in 3D
printing [23]. Due to the delayed response of materials, complete recovery of the initial shape does
not occur immediately upon removal of loading. As the range of materials for 3D printing increases,
the appearance of printable soft materials with lower damping should solve this problem. In order
to check the repeatability of the actuator’s performance, each specimen was loaded and unloaded
at least 3 times with one minute delay between cycles. As one can see from Figure 3b, the actuator
performance remains consistent during cycling even for the actuator undergoing local bucking due to
attached dead weight
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Figure 3. Force-retraction curves, obtained for homogeneous actuator made of different base
materials (a). Three consecutive actuations for the homogeneous TangoPlus actuator with central
position of the cable channel and 50 g dead weight attached to the free end (b). Solid curves represent
loading, dashed curves are obtained during unloading.

3.1. Position of the Channel

We start by considering homogeneous actuators with a straight cylindrical channel and examine
the influence of moving the channel position relative to the central axis (Figure 2b). Figure 4a shows the
force-retraction curves, and Figure 5 shows the corresponding snapshots, obtained during experiments
on the actuators with different distances of the channel’s central axis from the center of the cross-section.
It is clear that the considered actuators bend towards the direction of the channel shift. Additionally,
actuators with a larger distance between the channel center and cross-section center require less force
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for the same cable retraction length. For instance, to achieve the deformation corresponding to a
retraction of 14 mm, a force of 10 N should be applied to the actuator with the centered channel,
while 4 N is enough for the actuator with the internal channel shifted 3 mm from the central position.
The observed decrease in the required force is caused by the larger distance between the neutral line
of the composite and the location of the applied force. From Figure 5, it is clear that the same cable
retraction length does not lead to the same motions between actuators with differently located cable
channels. In general, the deformation of the actuator is higher when the channel is shifted further from
the central axis.
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Since the designed actuators hold potential engineering applications, which require lifting of
weights and withstanding external loadings, we perform actuation experiments with a dead weight
attached to the free end of the specimen, as shown in Figure 6. Similar to the weight-free case,
actuators with a shifted channel position require a lower force in comparison to the actuator with the
central cable channel (Figure 4b). While the added weight does not significantly alter the deformed
shape of the actuators with a shifted channel (compare Figures 5b–d and 6b–d), we observe that
addition of the weight to the actuator with the central channel can lead to local buckling near the fixed
end (see Figure 6a). Therefore, thoughtful placement of the cable channel inside the actuators not
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only reduces the tensile load on the cable but also achieves a more predictable deformation during
weight lifting.Polymers 2018, 10, x FOR PEER REVIEW  7 of 14 
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3.2. Actuators with Discrete Notches and Stiff Inclusions

The use of non-uniform geometry, even in homogeneous materials, can be exploited to create
complex deformation sequences and shapes [17]. Here, we manufacture actuators containing
three sections with notches or discrete stiff inserts between sections, as shown in Figure 2d,e.
These non-uniform sections in the actuator may lead to a deformed shape with non-uniform curvature
in contrast to the homogeneous cases considered above. Figures 7 and 8 show force-retraction
curves and corresponding experimental snapshots for actuators with notches and discrete stiff inserts,
along with the homogeneous actuator. The homogeneous actuator requires larger forces for the same
cable retraction in comparison with the actuator containing stiff inserts, despite the higher overall
Young’s modulus of the latter. At the same time, the existence of the notches drastically decreases
the required force for the same cable retraction length. However, for this actuator, in contrast to the
homogeneous one, the deformation mainly occurs near the notches, leading to the formation of a
deformed shape with relatively sharp corners (Figure 8e). While the homogeneous FLX9760 actuator
and the actuator with notches exhibit local buckling, when additional dead weight of 150 g is applied
to the free end, the actuator with relatively small stiff inserts has much more uniform bending shape,
which is associated with redistribution of the internal stresses due to the existence of the inserts.
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weight was applied on the free end of the actuator.

3.3. Actuators with Periodic Stiff Inclusions

Here, we consider the mechanical behavior of a soft actuator, which contains periodic stiff
inclusions on one of the sides. In contrast to the former case, in which inserts and notches are
mainly exploited to separate the different sections of the specimen, the continuous pattern of the stiff
inserts/inclusions introduces anisotropy through the whole length of the actuator. Here, we consider
the stiff inclusions in the shape of elongated platelets, which are located on one side of the actuator.
This architecture resembles an imbricated scale pattern in fish (Figure 2f) [40]. Figure 9a–c shows the
snapshots, which were obtained during experiments on the “scaled” composite actuator. While the
homogeneous FLX9760 actuator with a 150 g weight attached to the free end buckles near the fixed
point (Figure 8b), the addition of the scales prevents such buckling, even in the actuator, which is made
of much softer TangoPlus material (Figure 9a–c). Moreover, the deformed shape is characterized by
uniform curvature throughout the actuator. Therefore, the addition of the periodic patterns allows
one to change mechanical behavior and increase the applied maximal load without compromising
the flexibility of the actuator. This observation may be important for practical applications in which
actuators are required to maintain defined shapes.



Polymers 2018, 10, 846 9 of 14

Polymers 2018, 10, x FOR PEER REVIEW  9 of 14 

 

 
Figure 9. Experimental snapshot for TangoPlus actuators with periodic stiff inclusions (“scales”) (a–c) 
and stiff tubular sections around cable channel (d–f). 

3.4. Sectioning of the Actuator Near Cable Channel 

Finally, we consider actuators with modifications of the channel surroundings. Remarkable 
mechanical performance is observed in the soft actuator with the central channel, which contains stiff 
cylindrical inserts around the void, splitting the actuator into three sections (Figure 2c). From the 
force-retraction curves (Figure 10a), it is obvious that due to the addition of the cylindrical inserts, 
which suppress local deformation near the channels walls, this actuator requires much higher force 
for deformation to occur. However, this particular structure allows us to obtain non-uniform bending 
motion by means of the local deformation of the soft joints between stiff tubular inclusions. We 
observe that such a specimen is able to demonstrate high bending deformation, which is fully 
reversible, in addition to being able to lift large weights (Figures 9c and 10b). However, since the 
deformation is mainly localized inside the soft joints between the tubular inserts, these local stresses 
may exceed critical stress, which would lead to the failure of the actuator. 

 
Figure 10. Force-retraction curves for the homogeneous TangoPlus actuator, the actuator with stiff 
scales, and the actuator with tubular concentric inserts around channel under additional 50 g weight on 
free end (a). Force-retraction curves for the actuator with tubular concentric inserts with different 
weights attached to the free end of the specimen (b). 

Figure 9. Experimental snapshot for TangoPlus actuators with periodic stiff inclusions (“scales”)
(a–c) and stiff tubular sections around cable channel (d–f).

3.4. Sectioning of the Actuator Near Cable Channel

Finally, we consider actuators with modifications of the channel surroundings. Remarkable
mechanical performance is observed in the soft actuator with the central channel, which contains stiff
cylindrical inserts around the void, splitting the actuator into three sections (Figure 2c). From the
force-retraction curves (Figure 10a), it is obvious that due to the addition of the cylindrical inserts,
which suppress local deformation near the channels walls, this actuator requires much higher force
for deformation to occur. However, this particular structure allows us to obtain non-uniform bending
motion by means of the local deformation of the soft joints between stiff tubular inclusions. We observe
that such a specimen is able to demonstrate high bending deformation, which is fully reversible,
in addition to being able to lift large weights (Figures 9c and 10b). However, since the deformation
is mainly localized inside the soft joints between the tubular inserts, these local stresses may exceed
critical stress, which would lead to the failure of the actuator.

It is important to note that all geometrical features that are described above can be used
independently, as well as in combination with each other, in order to achieve required mechanical
performance. For instance, Figure 11 shows the experimental snapshots of an actuator, which contains
three sections with different lengths and scale-like structure to increase the bending stiffness of each
section. This design combines several features, which were considered above: empty notches program
the non-uniform bending shape; stiff periodic inserts provide additional stiffness to the sections to
prevent local buckling of the actuators during gripping. As one can see from Figure 11, the considered
actuator remains almost straight in the top section, enforced by periodic inserts, while deformation is
mostly accommodated by the empty notches. In the current design with only one cable, the deformed
shape is fixed by the internal architecture of the actuator; however, a more involved design with
several actuation cables can be adopted. Through independent control over these cables, a wider
range of possible deformed shapes can be realized. In general, the combination of rationally designed
architecture with a higher degree of freedom, available through actuation, increases ways to program
more intricate shapes.
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4. Design of the Gripper

A wide variety of robotics grippers, which are capable of manipulating small and large
objects, were proposed in the existing literature [41]. They employ a variety of the actuation
approaches, ranging from simple external motors [42] to electroactive polymers [43] and shape memory
alloys [44]. Depending on the maturity of the underlying technology, the corresponding grippers
have already reached commercialization, either in the beginning or end of their development path.
However, regardless of the actuation approach, we demonstrated before, the actuator performance can
be tailored by the smart choice of geometry and materials. Therefore, based on the previously shown
strategy to combine a soft matrix with stiff inserts and the smart choice of geometry, we developed the
gripper shown in Figure 12. This gripper consists of three sectioned actuators, shown in Figure 11,
which are driven simultaneously by one Nema17 stepper motor, located on the top part. Three cables
are passed through the fingers and connected to the shaft of the motor on the top, leading to the
simultaneous deformation of the actuators during rotation of the motor. An alternative design with
a separate motor for each finger is possible. It provides better manipulation and simultaneously
increases the complexity of the control. The gripper is mounted on the platform of a conventional FDM
3D-printer, which allows us to control its vertical and horizontal movements, as well as its gripping
motion through existing 3D-printing software (Repetier). Figure 13 shows the sequential process of
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delivering a strawberry from one bowl to another (Video S1 in Supporting Materials). This particular
gripper is able to consistently lift objects with a weight of 50 g. In order to produce a gripper capable
of lifting heavier objects, stiffer base materials or other architecture needs to be applied. Although this
soft gripper is able to lift only relatively light objects, this design has a hidden advantage. In particular,
due to the low bending stiffness of the structure, retraction of the cable does not cause a significant
increase in the gripper holding force, thus providing a very gentle grip. Indeed, if the weight exceeds
the potential of the gripper, local buckling near the fixed end of the actuator will occur, as shown
in Figure 8b, and the gripped object will not be deformed and/or damaged. In conventional “stiff”
grippers, an additional feedback loop is required in order to achieve the same behavior, whereas in
soft actuators this behavior is the essential part of their mechanics.

Polymers 2018, 10, x FOR PEER REVIEW  11 of 14 

 

not cause a significant increase in the gripper holding force, thus providing a very gentle grip. Indeed, 
if the weight exceeds the potential of the gripper, local buckling near the fixed end of the actuator 
will occur, as shown in Figure 8b, and the gripped object will not be deformed and/or damaged. In 
conventional “stiff” grippers, an additional feedback loop is required in order to achieve the same 
behavior, whereas in soft actuators this behavior is the essential part of their mechanics. 

 
Figure 12. Design of the fully 3D-printed gripper with three equally spaced soft fingers and stepper 
motor at the top. 

 
Figure 13. Transferring strawberries from one bowl to another using cable-actuated 3D-printed soft 
gripper (Video S1 in Supporting Materials). 

5. Conclusions 

We employed multimaterial 3D printing as a single-step process to manufacture soft cable-
driven polymer actuators. It was shown that by using only two constituent materials, it is possible to 
program the performance of the soft actuator and achieve the required response through targeted 
choice of the geometry. By shifting the cable channel position or adding discrete and periodic stiff 
inserts or notches, one can control the actuation shape and increase the weightlifting capacity while 
maintaining a predictable shape and avoiding local buckling. The ability to combine simple cable-
driven soft actuators into an assembly to transfer delicate objects demonstrates the immense potential 
of 3D-printed soft manipulators in real engineering applications, e.g., in food or medical industries. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Video S1: 
Manipulating raspberry by 3D-printed gripper, Video S2: Manipulating smooth ping-pong ball by 3D-printed 
gripper. 

Figure 12. Design of the fully 3D-printed gripper with three equally spaced soft fingers and stepper
motor at the top.

Polymers 2018, 10, x FOR PEER REVIEW  11 of 14 

 

not cause a significant increase in the gripper holding force, thus providing a very gentle grip. Indeed, 
if the weight exceeds the potential of the gripper, local buckling near the fixed end of the actuator 
will occur, as shown in Figure 8b, and the gripped object will not be deformed and/or damaged. In 
conventional “stiff” grippers, an additional feedback loop is required in order to achieve the same 
behavior, whereas in soft actuators this behavior is the essential part of their mechanics. 

 
Figure 12. Design of the fully 3D-printed gripper with three equally spaced soft fingers and stepper 
motor at the top. 

 
Figure 13. Transferring strawberries from one bowl to another using cable-actuated 3D-printed soft 
gripper (Video S1 in Supporting Materials). 

5. Conclusions 

We employed multimaterial 3D printing as a single-step process to manufacture soft cable-
driven polymer actuators. It was shown that by using only two constituent materials, it is possible to 
program the performance of the soft actuator and achieve the required response through targeted 
choice of the geometry. By shifting the cable channel position or adding discrete and periodic stiff 
inserts or notches, one can control the actuation shape and increase the weightlifting capacity while 
maintaining a predictable shape and avoiding local buckling. The ability to combine simple cable-
driven soft actuators into an assembly to transfer delicate objects demonstrates the immense potential 
of 3D-printed soft manipulators in real engineering applications, e.g., in food or medical industries. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Video S1: 
Manipulating raspberry by 3D-printed gripper, Video S2: Manipulating smooth ping-pong ball by 3D-printed 
gripper. 

Figure 13. Transferring strawberries from one bowl to another using cable-actuated 3D-printed soft
gripper (Video S1 in Supporting Materials).

5. Conclusions

We employed multimaterial 3D printing as a single-step process to manufacture soft cable-driven
polymer actuators. It was shown that by using only two constituent materials, it is possible to program
the performance of the soft actuator and achieve the required response through targeted choice of
the geometry. By shifting the cable channel position or adding discrete and periodic stiff inserts or
notches, one can control the actuation shape and increase the weightlifting capacity while maintaining a
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predictable shape and avoiding local buckling. The ability to combine simple cable-driven soft actuators
into an assembly to transfer delicate objects demonstrates the immense potential of 3D-printed soft
manipulators in real engineering applications, e.g., in food or medical industries.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/8/846/s1.
Video S1: Manipulating raspberry by 3D-printed gripper, Video S2: Manipulating smooth ping-pong ball by
3D-printed gripper.
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