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Abstract—A boundary value problem describing the equilibrium of a two-dimensional linear elastic
body with a thin rectilinear elastic inclusion and possible delamination is considered. The stress and
strain state of the inclusion is described using the equations of the Euler–Bernoulli beam theory.
Delamination means the existence of a crack between the inclusion and the elastic matrix. Nonlinear
boundary conditions preventing crack face interpenetration are imposed on the crack faces. As a
result, problem with an unknown contact domain is obtained. The problem is solved numerically by
applying an iterative algorithm based on the domain decomposition method and an Uzawa-type algo-
rithm for solving variational inequalities. Numerical results illustrating the efficiency of the proposed
algorithm are presented.
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1. INTRODUCTION
Artificial materials, such as fiber-reinforced composites, which consist of an elastic matrix reinforced

by high-strength thin fibers (inclusions), have been widely used in various engineering applications over
the last decades. Experience shows that crack defects, which have a large effect on the strength character-
istics of materials, can arise as early as manufacturing or the initial stage of operation of fiber-reinforced
composites. This circumstance motivates the development of new mathematical and numerical models
describing the deformation and failure of highly inhomogeneous structures with defects of various
natures, specifically, fiber-reinforced composites with cracks.

In this paper, we consider a boundary value problem modeling the equilibrium of a two-dimensional
linear elastic body with a thin elastic inclusion affected by given surface forces applied to a boundary por-
tion. The thin inclusion is understood as an object whose dimension is lower by one than that of the elastic
matrix. It is assumed that the inclusion extends to the outer boundary of the body and is possibly subject
to delamination. The underlying model relies on the ideas described in [1] and developed in [2]. The stress
and strain state of the inclusion is described using the equations of the Euler–Bernoulli beam theory.
Delamination means the existence of a crack between the inclusion and the elastic matrix. On the crack
faces, we set nonlinear boundary conditions in the form of equalities and inequalities preventing the inter-
penetration of the crack faces. As a result, a problem with an unknown contact area arises. It is shown that
the equilibrium problem under consideration is equivalent to a variational inequality on the set of kine-
matically admissible constraints. For the numerical solution of the problem, an iterative algorithm is pro-
posed based on the domain decomposition method and an Uzawa-type algorithm for solving variational
inequalities. Every iteration step consists of solving four linear problems, namely, two plane elasticity
problems, the problem of stretching an elastic rod, and a beam bending problem. The solutions of these
four problems are related by Lagrange multipliers. The algorithm designed is tested using the finite ele-
ment method.
761
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Fig. 1. Geometry of the problem.
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Let us briefly overview the works that are closest in subject to our study. In describing the deformation
and failure of fiber-reinforced composites, it is reasonable to use not only models of elastic inclusions, but
also models of semi-rigid and rigid inclusions. In this case, some (possibly all) of the equilibrium equa-
tions for the elastic inclusions are replaced by nonlocal boundary conditions ensuring equilibrium condi-
tions for the inclusions. In recent publications [3–5], well-posed mathematical models for the equilibrium
of elastic bodies with thin elastic, rigid, and semi-rigid inclusions and cracks with boundary conditions
ensuring mutual nonpenetration of the crack faces were described and the dependence of the solutions on
the stiffness parameters of the inclusions was analyzed. Results of numerical simulation concerning the
equilibrium of elastic bodies with thin rigid inclusions can be found in [6–10]. The domain decomposition
method as applied to various problems in continuum and solid mechanics was discussed in [11–16] and
[17–19], respectively. Note also [8, 20, 21], where problems in the theory of cracks with possibly contact-
ing crack faces were solved numerically by applying the domain decomposition method. Other methods
for solving such problems were developed in [22–24].

2. FORMULATION OF THE PROBLEM

Let  be a bounded domain with a Lipschitz boundary , where ,
, , and  is a segment in  with its endpoints  and 

belonging to the outer boundary  so that  lies on , and , on , as shown in Fig. 1. The
segment  divides  into two subdomains  and  with Lipschitz boundaries  such that

 . Suppose that  denotes the unit outward normal to , 
denotes the unit normal to , and . Finally, let .

In our consideration, the domain  corresponds to an elastic body made of a generally inhomoge-
neous anisotropic material with an elasticity tensor ,  having the standard properties

of symmetry and positive definiteness and satisfying ; and  represents a thin elastic inclusion
whose behavior is described using the model of the Euler–Bernoulli elastic beam [25] and the mechanical
and geometric properties are characterized by Young’s modulus  of the material, by the cross section
moment of inertia , and by the area  of the inclusion. Assume that  delaminates from the elastic part

 on the segment . Thus, there is a crack between the elastic body and the inclusion. The following
variants are also possible:  (no delamination) or  (complete delamination). In the model
under consideration, the conditions on the crack faces are set in the form of equalities and inequalities
preventing mutual penetration of the crack faces (see, e.g., [26]).

The elastic behavior of the material is described using the theory of small deformations, i.e., Hooke’s
law is used as an equation of state and the strain tensor  is connected with the displacement
vector  by the linear relations

The subscript after the comma denotes differentiation with respect to the corresponding coordinate.
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Consider the following mixed boundary value problem: given a vector of surface forces
, find the displacement field u for the points of the elastic body, horizontal displace-

ments , and vertical deflections w of the points of the thin elastic inclusion such that

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

Here,  is the jump in h across , where  is the trace of h on  taken on the side of ,
; ; and  Functions defined on  are identified with functions of

variable .
Relations (1) are equilibrium equations for the elastic body, while (2) and (3) are the Euler–Bernoulli

equations for the thin elastic inclusion . The right-hand sides  and  of equilibrium
equations (2) and (3) describe the forces exerted on  by the ambient elastic medium. The inequality
in (8) ensures the mutual nonpenetration of the crack faces. If there is no contact at a given point 

( , then the normal stress on the crack face  is zero . On the other hand,

if the normal stress on  is negative , then the crack faces are in contact ( .

Moreover, conditions (10) guarantee that the displacements of the elastic body on  are equal to those of
the thin inclusion. The boundary conditions (6) mean that the corresponding end of the thin inclusion is
free, while conditions (7) correspond to a clamped end. Note once again that the contact points of the
opposite crack faces are not known a priori and are to be determined in the course of problem solving.

3. VARIATIONAL FORMULATION OF THE PROBLEM

To obtain a variational formulation of the boundary value problem (1)–(11), we introduce the function
spaces

and the set of kinematically admissible displacements

= , ∈ Γ 2
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where . The potential energy functional of the system is defined by the formula

.

Consider the problem of minimizing  over the set K: find an element  such that

(12)

Theorem 1. There exists a unique solution  of problem (12). This solution satisfies the varia-
tional inequality

(13)

Moreover, the variational inequality (13) represents a weak formulation of the boundary value problem (1)–(11).

Proof. The set K is convex and closed (and, hence, weakly closed) in the reflexive space
, while the functional  is weakly lower semicontinuous and coercive over this

space. The last assertion is a simple consequence of the first Korn inequality and the Poincaré–Friedrichs
inequality. Therefore, problem (12) has a solution (see [26, Theorem 1.11]). The uniqueness is checked
directly. Note also that the variational inequality (13) gives a necessary and sufficient condition for the
convex and Gâteaux differentiable functional  to have a minimum over the set K.

Let us verify that the boundary value problem (1)–(11) is equivalent to variational inequality (13) for
smooth solutions. First, assume that relations (1)–(11) hold. Choosing , multiplying the
equilibrium equations (1), (2) and (3) by , , and , respectively, and integrating the
results over  and , we obtain

Integration by parts, in view of (4)–(7) and (11), yields

Once again using (11), we note that the integration over  can be replaced by integration over . Thus,
to obtain variational inequality (13), it is sufficient to prove

Obviously, the last inequality holds by virtue of boundary conditions (8)–(10).

Now, we prove the converse. Assume that variational inequality (13) is satisfied. It is easy to see that
the equilibrium equations (1) hold in the sense of distributions. To check this assertion, it is sufficient to
substitute   as test functions into (13). Then, using 

  on  and  ,  on  as test functions in (13),
we have

(14)
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Integration by parts in (14) yields

(15)

Assuming that  for  and  on , we derive

(16)

Since  on  is arbitrary, we conclude that . Since  and  on  the equi-
librium equations (2) and (3) follow from (16). Taking into account these relations and again using (15),
we see that the boundary conditions (5) and (6) are satisfied. It remains to check the boundary conditions
from (8) and (9) for the normal stress . The corresponding argument is omitted, since it repeats,
word for word, the proof in [2] for the case of both free ends of  lying inside . The theorem is proved.

4. DECOMPOSITION OF THE PROBLEM
Consider the function spaces

and the convex closed (in ) set

The energy functionals are defined as

.

Consider the following minimization problem: find an element  such that

(17)

As before, it can be shown that problem (17) has a unique solution  satisfying the varia-
tional inequality
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Moreover, we have

where  is a solution of the minimization problem (12).
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5. APPROXIMATE PROBLEM
To solve the problem with inequality constraints (17), we properly regularize it. For this purpose, we

apply the approach used in [27, Chapter 5] for solving the problem of elastoplastic torsion of a rod and
adapted in [8, 20, 28] to solving crack problems with possibly contacting crack faces. Specifically, for an
arbitrary number , define the sets

Over the set , consider the Lagrange functional

which is associated with the following family of saddle point problems depending on the regularization
parameter p: find an element  ∈ 
such that

(19)

The Lagrange multipliers   thus introduced can be interpreted as follows:  ensures the validity
of the nonpenetration condition for the crack faces ,  and  relate the displacement fields of  and

, and  and  relate the displacement fields of  and  outside .

Since each the sets in the direct product  is convex, closed,
and bounded in the corresponding reflexive space, while the Lagrange functional L is convex and lower
semicontinuous on  and concave and upper semicontinuous on ,
the theory of existence of saddle points guarantees that, for every , problem (19) has at least one solu-
tion (see [29, Chapter 6, Proposition 2.1]).

Theorem 2. Let  be a solution of problem (17) and  be a solution
of problem (19). Then, as ,
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(24)
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It follows from (21)–(25) that the components of the vector function  can be represented
in the form

(26)

(27)

(28)

(29)

(30)

Let

Then, by virtue of (26)–(30), we have

(31)

(32)

(33)

Note that, by virtue of the first Korn inequality and the Poincaré–Friedrichs inequality, the norms in the
spaces  ( ), V, and W can be defined as

Σ γ Σ γ

λ − ⋅ ν ≤ λ − ⋅ ν ∀λ ∈ Λ ,∫ ∫
\ \

4 1 2 4 1 2 4 4
1 1( ) ( )

c c

p p p p p pu u dx u u dx

Σ γ Σ γ

λ − ⋅ τ ≤ λ − ⋅ τ ∀λ ∈ Λ .∫ ∫
\ \

5 1 2 5 1 2 5 5
1 1( ) ( )

c c

p p p p p pu u dx u u dx

λ , λ ,λ ,λ ,λ1 2 3 4 5( )p p p p p

⎧ , − ⋅ ν ≤ ,⎪λ = ⎨
, − ⋅ ν > ,⎪⎩

1 2
1

1 2

0 ( ( ) ( )) 0
( )

( ( ) ( )) 0
p p

p
p p

u x u x
x

p u x u x

⎧− , ⋅ τ − ≤ ,⎪λ = ⎨
, ⋅ τ − > ,⎪⎩

v

v

1
12

1
1

( ( ) ( )) 0
( )

( ( ) ( )) 0
p

p
p

p u x x
x

p u x x

⎧− , ⋅ ν − ≤ ,⎪λ = ⎨
, ⋅ ν − > ,⎪⎩

1
13

1
1

( ( ) ( )) 0
( )

( ( ) ( )) 0
p

p
p

p u x w x
x

p u x w x

⎧− , − ⋅ ν ≤ ,⎪λ = ⎨
, − ⋅ ν > ,⎪⎩

1 2
4

1 2

( ( ) ( )) 0
( )

( ( ) ( )) 0
p p

p
p p

p u x u x
x

p u x u x

⎧− , − ⋅ τ ≤ ,⎪λ = ⎨
, − ⋅ τ > .⎪⎩

1 2
5

1 2

( ( ) ( )) 0
( )

( ( ) ( )) 0
p p

p
p p

p u x u x
x

p u x u x

γ

= , − ⋅ ν ,∫
1 1 2

1max{0 ( ) }
c

p p pI u u dx

Σ Σ

= , ⋅ τ − + , − ⋅ τ − ,∫ ∫v v
2 1 1

1 1max{0 } max{0 ( )}p p p p pI u dx u dx

Σ Σ

= , ⋅ ν − + , − ⋅ ν − ,∫ ∫
3 1 1

1 1max{0 } max{0 ( )}p p p p pI u w dx u w dx

Σ γ Σ

= , − ⋅ ν + , − − ⋅ ν ,∫ ∫
\

4 1 2 1 2
1 1max{0 ( ) } max{0 ( ) }

c

p p p p pI u u dx u u dx

Σ γ Σ

= , − ⋅ τ + , − − ⋅ τ .∫ ∫
\

5 1 2 1 2
1 1max{0 ( ) } max{0 ( ) }

c

p p p p pI u u dx u u dx

γ Σ

λ − ⋅ ν = ≥ , λ ⋅ τ − = ≥ ,∫ ∫ v
1 1 2 1 2 1 2

1 1( ) 0 ( ) 0
c

p p p p p p p pu u dx pI u dx pI

Σ Σ γ

λ ⋅ ν − = ≥ , λ − ⋅ ν = ≥ ,∫ ∫
\

3 1 3 4 1 2 4
1 1( ) 0 ( ) 0

c

p p p p p p p pu w dx pI u u dx pI

Σ γ

λ − ⋅ τ = ≥ .∫
\

5 1 2 5
1( ) 0

c

p p p pu u dx pI

αU α = ,1 2

α

α

α α α
τ ν

Ω

= σ : ε , = π , = π .∫ v v

2 2 2( ) ( ) 2 ( ) 2 ( )V VU
u u u dx w w
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 58  No. 5  2018



768 KAZARINOV et al.
The variational equality (20) implies that

(34)

Taking into account estimates (31)–(33) and the Cauchy inequality, we obtain the -uniform estimate

(35)

Moreover, for all , it follows from (34) and (35) that

(36)
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On the basis of (35), we choose a subsequence of the sequence  (retaining the same nota-
tion) such that, as ,
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Moreover, the following chain of inequalities holds:
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Now let us show that  coincides with . Let  be an arbitrary

function. Substituting  into (20) as a test function and taking into account
(21)–(25), we obtain the variational inequality
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In view of (38), passing to the limit as  in (40), we obtain a variational inequality of form (18) with
 replaced by . Since inequality (18) has a unique solution,  coincides with
. Moreover, it follows that  converges weakly to  in 

as .
In addition to (38), we prove that, as ,

(41)

From (18), we obtain

(42)

Since the norm is weakly lower semicontinuous and in view of identity (42), the following chain of
inequalities is valid:

whence, as ,

The weak convergence and convergence of the norms in  imply strong convergence (41).
The theorem is completely proved.

6. ITERATIVE ALGORITHM

Let us construct an iterative algorithm for the numerical solution of problem (19). First, we note that
variational equality (20) is equivalent to four ones:

Let  denote the projectors onto the sets ,  in the respective spaces , , and

. The following Uzawa-type algorithm is proposed for solving problem (19).
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Algorithm

Step 1. Iteration . Choose arbitrary , . For example, it is possible to set  for
all .

Step 2. Iteration . Find the functions , , , and  by solving the variational equalities

Step 3. Terminate the algorithm or, for some , set

The convergence of the iteration sequence follows from the general convergence theorems for the
Uzawa algorithm (see [29, Chapter 7, Proposition 1.1]). Specifically, the following result holds.

Theorem 3. There exists a number  such that, for all , as ,

7. NUMERICAL EXPERIMENTS
Retaining the previous notation, we specify the computational domains  as the square 

and define  and  As before, homogeneous Dirichlet conditions are set
on the right boundary of the square , while Neumann conditions are set on the upper

, lower , and left  boundaries.
In the examples considered below, we assume that the elastic part  is a homogeneous and isotropic

one in a plane strain state. Then the stress and strain tensors are related by

The elastic Lame constants  and  are expressed in terms of Young’s modulus  and Poisson’s ratio
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Fig. 2. Partial closure of the crack faces: deformed configuration and the von Mises stress distribution.
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The parameter values are    and .

As was indicated above, the numerical computations were performed using the finite element method.
The domain  was partitioned into  triangles with  vertices, while , into  triangles
with  vertices. The interface  between the domains contained  vertices, and the minimum and
maximum sizes of the triangles near  were  and , respectively. The stopping criterion for the
algorithm was the condition

In all numerical experiments, we used  and . This choice of the regularization parameter p
was determined by estimate (36). To choose an optimal value of the relaxation parameter , the algorithm
was tested on a coarse grid where the computation time was relatively insignificant and the resulting value
of  was then used on a fine grid. The spaces , , were approximated by finite-element spaces
consisting of piecewise smooth functions, i.e., Lagrange -elements [30, 31].

7.1. Partial Closure of the Crack Faces

Setting , , and , we see that the crack faces close in a
neighborhood of the right tip of . Figure 2 shows the deformed configuration in the Lagrangian coordi-
nates  with a scaling factor equal to 40 in both axes and the von Mises stress distribution (the
second invariant of the stress tensor).

Figures 3 and 4 present the vertical and horizontal displacements of the body points lying on the crack
faces  and  of the interface  between  and . Recall that by virtue of boundary conditions (10),
the displacements of  coincide with the vertical deflections and horizontal displacements of . Note that
the closure of the crack faces occurs on the segment .
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Fig. 4. Partial closure of the crack faces: horizontal displacements of the interface.
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Fig. 3. Partial closure of the crack faces: vertical displacements of the interface.
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Fig. 5. Complete opening of the crack faces: the deformed configuration and the von Mises stress distribution.
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Fig. 6. Complete opening of the crack faces: vertical displacements of the interface.
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Fig. 7. Complete opening of the crack faces: horizontal displacements of the interface.
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7.2. Complete Opening of the Crack Faces

Let ),  and  In this case, the faces of  open com-
pletely. Figure 5 shows the deformed configuration in the Lagrangian coordinates  with a scal-
ing factor equal to 40 in both axes and the von Mises stress distribution.

Figures 6 and 7 present the vertical and horizontal displacements of the body points lying on  and .
As in the preceding example, the displacements of the points of  are the vertical deflections and hori-
zontal displacements of the points of .

Analyzing the stress distributions near , we can conclude that the stress fields have a singularity at the
crack tips. Moreover, a singularity occurs even when the crack faces are in contact near the crack tip. This
finding is explained by the change in the boundary condition type at the crack tips. At the same time, it
should be noted that the indicated stress singularity occurs only in , but is absent in . To the best of
our knowledge, the exact asymptotics of the solution near the crack tips and, hence, the character of the
stress singularity for model (1)–(11) remain an open question.

To conclude, we note that, in analyzing a stress singularity at a crack tip in fracture mechanics, it is
useful to apply invariant energy integrals that are independent of a smooth curve enclosing the crack tip.
For the model considered in this work, the existence of invariant integrals was established in [32].
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