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a b s t r a c t 

In this work, we study the failure behavior of 3D-printed polymer composites undergoing 

large deformations. Experimental results are compared to numerical simulations using the 

phase field fracture method with an energetic threshold and an efficient plane-stress for- 

mulation. The developed framework is applied to a composite system consisting of three 

stiff circular inclusions embedded into a soft matrix. In particular, we examine how ge- 

ometrical parameters, such as the distances between inclusions and the length of initial 

notches, affect the failure pattern in the soft composites. We observe complex failure se- 

quences including crack arrest and secondary crack initiation in the bulk material. Remark- 

ably, our numerical simulations capture these essential features of the composite failure 

behavior and the numerical results are in good agreement with the experiments. We find 

that the performance of composites – their strength and toughness – can be tuned through 

selection of the inclusion position. We report, however, that the optimal inclusion spacing 

is not unique and depends also on the initial notch length. These findings offer useful in- 

sight for design of soft composite materials with enhanced performance. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Polymer composites are versatile high performance materials that are widely used in a variety of engineering applica-

tions. These materials, consisting of a polymer matrix reinforced by hard-inclusions, offer significant advantages over pure

polymers. For example, well-designed combinations of these components may lead to superior mechanical and thermal

properties that are infeasible using a single material ( Greenhalgh, 2009 ). In particular, since the strength and stiffness of the

inclusions are typically much higher than those of the matrix material, the stiffness of the composite is typically improved

in addition to the material toughness due to the treacherous path cracks must traverse through the matrix in order for a

structure to fail catastrophically. 

The use of 3D-printing for rapid manufacturing of polymer composites has gained significant attention in the last two

decades ( Wang et al., 2017 ). This additive manufacturing technique can produce polymer composites with complex geome-

tries and precise inclusion positions/shapes obtained directly from computer aided designs. However, while the addition of

inclusions in a polymer matrix may enhance its strength (resistance to non-recoverable deformation), it may also decrease
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its toughness (resistance to fracture) ( Ritchie, 2011 ). In particular, a different arrangement of inclusions may entirely alter

the failure pattern of the polymer composite, thereby affecting its fracture toughness. 

Theoretical and numerical predictions together with the observed performance of natural and biological materials indi-

cate that microstructural design holds significant potential for the development of superior materials. The physical realiza-

tion of these ideas relies on advances in material fabrication techniques and the ability to produce microstructures at various

length scales. Thus, for example, Slesarenko et al. (2017a,b) experimentally realized the underlining failure mechanisms in

nacre-like 3D-printed composite structures. In particular, they observed distinct single-step and two-step failure modes in

the soft interphases depending on the loading direction relative to microstructures. Buehler and co-authors ( Dimas et al.,

2013; Libonati et al., 2016 ) employed 3D-printing to illustrate the improved toughness performance of the numerically pre-

dicted bio-inspired composites based on mineralized natural materials with soft interphases. Ryvkin et al. (2020) realized

fault-tolerant lattice structures through pre-designed failure in weak links, thus, preventing damage propagation, and pro-

moting even damage distribution. Alternative strategies such as crack tip blunting ( Dimas et al., 2013 ), microstructure-guided

crack deflection ( Studart, 2016 ), and shielding ( Jia et al., 2019 ) have been successfully illustrated on 3D-printed composites.

Liu and Li (2018) reported increased fracture toughness in 3D-printed composites due to weak wavy interfaces. We note,

however, that the fracture behavior of the soft materials is rate-sensitive ( Slesarenko and Rudykh, 2018 ), and this aspect can

play an important role in the failure mechanisms of dynamically loaded composites ( Gu et al., 2017 ). 

Computational modeling of the rupture of polymer composites at large deformations remains a significant challenge. Be-

yond the hyperelastic material modeling and complex geometries, numerical methods that attempt to model fracture must

be able to capture crack nucleation at multiple arbitrary spatial locations and crack propagation along complex trajecto-

ries while accounting for crack coalescence and branching. Furthermore, these methods should also be numerically robust

(e.g. capable of handling large element distortions), insensitive to the choice of mesh discretization, and well-posed (e.g.

convergent under mesh refinement). 

The phase field method is one such promising method that has emerged in the past two decades ( Bourdin et al., 2008;

Francfort and Marigo, 1998; Miehe et al., 2010a; 2015; 2010b ), and has already been explored in a variety of areas includ-

ing quasi-brittle fracture ( Ambati et al., 2015; Borden et al., 2012; Duda et al., 2015; Nguyen et al., 2016 ), ductile fracture

( Ambati et al., 2016; Arriaga and Waisman, 2017; Borden et al., 2016; McAuliffe and Waisman, 2015 ), fracture of geological

materials including hydraulic fracture ( Choo and Sun, 2018; Miehe and Mauthe, 2016; Mikeli ́c et al., 2015; Wilson and Lan-

dis, 2016 ), interfacial fracture ( Nguyen et al., 2016; Paggi and Reinoso, 2017; Verhoosel and Borst, 2013 ), anisotropic fracture

( Teichtmeister et al., 2017 ), bone fracture ( Shen et al., 2019 ), and fracture of viscoelastic materials ( Shen et al., 2019 ). In the

phase field method, the discrete crack surface is approximated by a diffusive crack representation via an auxiliary scalar field.

The evolution of the fracture surface is captured by an additional PDE, which can be derived variationally ( Bourdin et al.,

2008 ) or using thermodynamic principles ( McAuliffe and Waisman, 2015 ). Most phase field methods published in the lit-

erature require only two parameters: one controlling the width of the diffusive fracture surface l 0 , and either the critical

energy release rate, G c , or the critical tensile energy density �c , which may be viewed as material parameters. 

In the context of large strain fracture of hyperelastic materials, several notable phase field fracture methods have been

published. Miehe and Schnzel (2014) was the first to propose large deformation brittle fracture formulation for rubbery

polymers. Wu et al. (2016) proposed a stochastic fracture analysis of the rupture of rubber reinforced with Carbon black

random inclusions, which provided insight into better designs of these composites. Subsequent work by San and Waisman

proposed to optimize the location of these particles in a soft polymer matrix to achieve failure resistant designs ( San and

Waisman, 2017 ). 

Raina and Miehe (2016) and Gltekin et al. (2018) studied the fracture of soft biological tissues accounting for anisotropic

hyperelasticity with different fiber orientations. Talamini et al. Talamini et al. (2018) proposed a new energy split in the

phase field formulation to account for chain bond deformation, which resulted in a modified phase field driving force.

This formulation was later extended by Mao and Anand (2018) to model fracture of polymeric gel. Bilgen and Wein-

berg (2019) also developed new ad-hoc driving forces, which were motivated by general fracture mechanical considera-

tions. Kumar et al. (2018) derived toughness functions to model the fracture and healing of elastomers undergoing large

deformations. Yin et al. (2019) studied fracture of exotic natural structures (Bouligand structures), and compared their nu-

merical results with 3D-printed samples. Additionally, rate dependent visco-hyperelastic rubber fracture has been studied 

by Loew et al. (2019) and Yin and Kaliske (2019) . 

It should be noted that, as with most numerical methods, there are also drawbacks of the phase field method

when compared with other techniques. A few important cons, such as the computational cost, are discussed in the

work of Wu et al. (2019) . Advancements in mesh adaptivity seek to alleviate some of the computational burden (see

Heister et al. (2015) for example). Additionally, in classical phase field models the strength of the material is tied to the

length scale (see Borden et al. (2012) for 1D analysis). In the current work we select a length scale on the same order as

one previously identified for a rubber material ( Loew et al., 2019 ) and use the phase field formulation with an energetic

threshold presented in Miehe et al. (2015) . This allows us to select the critical strain energy density such that phase field

evolution occurs only after the local strain energy density exceeds this threshold. The idea of using the strain energy den-

sity as a failure criterion is also consistent with the findings of Hocine et al. (2002) in which failure of natural rubber was

investigated and the strain energy density along the crack trajectory was found to be independent of the crack length and

specimen geometry (see also Volokh, 2010 ). 
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Additionally, it is important to note that other interesting failure models for soft materials have been proposed. In par-

ticular, the work of Volokh on hyperelasticity with softening, based on the idea of energy limiters, and more recently the

material sink formulation ( Faye et al., 2019; Volokh, 2011; 2017 ) also seems to be promising. 

In this work we study the failure mechanism of 3D-printed polymer composites undergoing large deformation through

experiments and numerical modeling. A simple parameterized geometry with three rigid circular inclusions embedded into

a soft hyperelastic matrix is proposed for a test study. By adjusting the distances between inclusions and by introducing

notches of various lengths we alter the failure pattern in the specimens. A non-standard phase field fracture method with

energetic threshold is employed for the numerical study assuming plane stress conditions. Remarkably, the derived and

implemented reduced plane stress formulation coupled with phase field fracture agrees well with the experimental data,

capturing both crack arrest and secondary crack initiation in the bulk material. 

We remark that the material fabrication technique employed in this study does not result in weak interfaces between

the matrix and inclusion phases, and, for various composite systems ( Li and Rudykh, 2019; Li et al., 2018a; 2018b; 2013;

Rudykh and Boyce, 2014; Rudykh et al., 2015; Slesarenko and Rudykh, 2016 ), failure in this region has not been ob-

served. We note, however, that the composite fabrication method produces the interphase mixing zone (see, for example,

Arora et al. (2019) that studied the influence of the inhomogeneous interphases on mechanical stability). Our experimental

observations indicate that the matrix is weaker than the interphase material. Nevertheless, the numerical formulation could

potentially be extended to the class of composites with weak interphases by adopting, for example, a framework appropri-

ately capturing the relevant physics (see, for example, Nguyen et al. (2016) ). 

The paper is organized as follows: In Section 2 we provide the details of the phase field fracture model employed herein

and the corresponding finite element implementation. In Section 3 the composite structures are detailed and the experi-

mental/numerical methods used to study their failure behavior are outlined. Finally the numerical and experimental results

are provided in Section 4 in which both qualitative and quantitative features are compared. Furthermore, the numerical

model is also used in place of additional experimental data to remark on the physical implications of the results obtained,

followed by a concluding summary. 

2. Phase field fracture model 

In this section we provide the derivation of the phase field fracture formulation used in this work, which is largely based

on the seminal work of Francfort and Marigo (1998) , Bourdin et al. (2008) and Miehe et al. (2010a, 2015, 2010b) . However,

we employ a non-standard phase field method with an energetic threshold as presented in Miehe et al. (2015) in order

to prevent energy degradation at low stress levels. We note that the same phenomenon could also be partially mitigated

by judicious selection of the degradation function as presented by Borden (2012) . Experimentally applied loading rates are

low enough to permit the use of quasi-static numerical analyses and for reasons of computational efficiency we perform

the numerical simulations in two space dimensions under an assumed state of plane stress. In Appendix A the plane stress

assumption is justified for the geometry used herein via numerical comparison with a plane strain assumption and a full

three-dimensional formulation. Additionally, since the plane stress assumption results in a constraint that is not trivially

satisfied, we also derive the reduced in-plane relations, including the nonlinear equation to be solved for the out-of-plane

stretch and the analytical reduced consistent tangent tensor. 

2.1. Phase field fracture formulation 

Consistent with the ideas presented in Francfort and Marigo (1998) , the phase field fracture formulation used herein

is posed as an energy minimization problem for a continuum body, �0 (where the ( · ) 0 subscript signifies the reference

configuration). Here we let F represent the deformation gradient and �0 represent the crack surface. Neglecting the potential

associated with external forces, the total potential energy of the solid may be expressed as 

�(F , �0 ) = W elas (F ) + W f rac (�0 ) (2.1)

in which the stored elastic energy, W elas , is a function of the deformation gradient ( F ), and the fracture surface energy, W frac ,

depends on the crack surface. In the phase field formulation the crack surface is approximated by an elliptic functional of a

scalar field, d ∈ [0, 1], which may be expressed as 

�0 ≈ �l 0 (d) = 

∫ 
�0 

γ (d , ∇ 0 d ) d V = 

∫ 
�0 

(
1 

2 l 0 
d 2 + 

l 0 
2 

∇ 0 d · ∇ 0 d 

)
d V (2.2)

where γ (d , ∇ 0 d ) is termed the crack surface density function. The minimization of this functional yields the diffuse crack

topology ( Bourdin et al., 2008; Miehe et al., 2010b ) which replaces the sharp crack representation. 

d(X ) = Arg 

{
inf 

d∈S �
�l 0 (d) 

}
(2.3)

S � = { d | d ∈ H 

1 , d(X ) = 1 when X ∈ �} (2.4)
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Fig. 1. Phase field approximation of a sharp crack discontinuity in a hyperelastic medium. Note that both figures are drawn in the reference configuration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The length scale, l 0 , that is introduced controls the width of the regularized fracture surface (see Fig. 1 ). We define S � as the

set of admissible fields satisfying the Dirichlet-type conditions on the crack surface, where X signifies the spatial location in

the undeformed domain, and H 

1 is the Sobolev function space given as 

H 

1 = 

{
v 

∣∣∣ ∫ 
�0 

v 2 dX < + ∞ , and 

∫ 
�0 

|∇v | 2 dX < + ∞ 

}
(2.5) 

As presented in Miehe et al. (2010b) , an approximation of the fracture surface energy is obtained using the crack surface

approximation provided in Eq. 2.2 . Subsequently, in Miehe et al. (2015) , a strain criterion with a threshold was introduced

in order to prevent degradation of the elastic energy at low stress levels. This updated model is used in this work where

the fracture surface energy approximation may be expressed as 

ˆ W f rac (d) = 

∫ 
�0 

2�c 

(
d + 

l 2 0 

2 

∇ 0 d · ∇ 0 d 

)
d V (2.6) 

in which �c represents a critical fracture energy per unit volume. In this work we use �c as a material parameter for

calibration of the model with the experimental data. 

2.1.1. Stored elastic energy approximation 

The undamaged elastic energy density employed in this work consists of a standard decomposition into volumetric and

isochoric components as shown below. The isochoric function is a simple neoHookean model with shear modulus, μ, while

the volumetric function is another common form with bulk modulus, κ . Here we define the elastic energy density function

per unit undeformed volume, 

�e (F ) = �e ( I 1 , J) = 

κ

2 

( log J ) 
2 ︸ ︷︷ ︸ 

�v ol 
e 

+ 

μ

2 

(
I 1 − 3 

)
︸ ︷︷ ︸ 

� iso 
e 

(2.7) 

where J = det F and I 1 = J −2 / 3 I 1 which is the first invariant of the isochoric right Cauchy-Green deformation tensor and I 1 =
F i j F i j is the unmodified first invariant. This elastic energy density adequately describes the elastic response of the material

and may be naturally decomposed into compressive and tensile components via a volumetric/isochoric energy split similar

to that of Amor et al. Amor et al. (2009) . Here we define this tensile/compressive ( �+ 
e / �

−
e ) energy decomposition in the

following way based upon the determinant of the deformation gradient similar to Wu et al. (2016) . 

�+ 
e ( I 1 , J) = 

{
κ
2 ( log J ) 

2 + 

μ
2 

(
I 1 − 3 

)
, if J ≥ 1 

μ
2 

(
I 1 − 3 

)
, otherwise 

(2.8) 

�−
e ( I 1 , J) = �e ( I 1 , J) − �+ 

e ( I 1 , J) (2.9) 

Note that other splits of the elastic energy are possible, including one based on a multiplicative split of the deformation gra-

dient ( Hesch and Weinberg, 2014 ), one based on principal invariants of the Cauchy-Green deformation tensor ( Hesch et al.,

2017 ), and a more recent split based on principal stretches ( Tang et al., 2019 ). 

This yields a damaged elastic energy density in which only the tensile energy is degraded according to

Miehe et al. (2010a) , 

�e ( I 1 , J, d) = �−
e ( I 1 , J) + (g(d) + k )�+ 

e ( I 1 , J) (2.10) 

where the total stored elastic energy approximation is obtained via integration over the reference volume. 

ˆ W elas ( I 1 , J, d) = 

∫ 
�

�e ( I 1 , J, d ) d V (2.11) 

0 
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The phase field parameter, d , affects the stored elastic energy via the action of the so-called degradation function, g ( d ).

Although a cubic degradation function has previously been proposed ( Borden, 2012 ), we employ the more common quadratic

degradation function in this work, defined as g(d) = (1 − d) 2 . Additionally, we include the small constant parameter, k , in

order to ensure the problem remains well-posed ( Miehe et al., 2010b ). In all subsequent examples in this work k is set to

10 −6 . 

The damaged first Piola-Kirchoff stress may then be obtained directly from the damaged elastic energy density via the

following relation, 

P = 

∂�−
e 

∂F ︸ ︷︷ ︸ 
P −

+(g(d) + k ) 
∂�+ 

e 

∂F ︸ ︷︷ ︸ 
P + 

(2.12)

where P is now the damaged first Piola-Kirchoff stress tensor and P −/ P + are the undamaged, compressive and tensile first

Piola-Kirchoff stress tensors, respectively. 

2.1.2. Approximate total potential energy 

Substituting the above approximations into the total potential energy in Eq. (2.1) we obtain the approximate form ( ̃  �)

as 

˜ �(u , d) = 

ˆ W elas (F , d) + 

ˆ W f rac (d) 

= 

∫ 
�0 

(
�−

e (F ) + (g(d) + k )�+ 
e (F ) 

)
dV 

+ 

∫ 
�0 

2�c 

(
d + 

l 2 0 

2 

∇ 0 d · ∇ 0 d 

)
dV (2.13)

Note that the hat notation, ˆ (·) , in Eq. (2.13) signifies the previously introduced approximation of the quantity. At a minimum,

the first variation of the total potential with respect to the displacement and phase field must vanish, i.e. δ ˜ � = 0 . Application

of this principle, the divergence theorem, and the standard variational argument yields the Euler-Lagrange equations, 

∇ 0 · P = 0 in �0 (2.14)

�c 

(
d − l 2 0 ∇ 0 · ∇ 0 d 

)
− (1 − d)(�+ 

e − �c ) = 0 in �0 (2.15)

u = 

ˆ u on ∂�u 
0 (2.16)

n · ∇ 0 d = 0 on ∂�0 (2.17)

where the additional Dirichlet and Neumann boundary conditions have been added (i.e. Eqs. (2.16) and (2.17) ). Note that

the Eq. (2.17) implies that there is no damage flux out of the domain. Eq. (2.14) represents quasi-static equilibrium in the

absence of body forces while Eq. (2.15) governs the evolution of the phase field. 

Finally, Eq. (2.15) is modified in order to enforce irreversibility of crack growth. The local history field, H, proposed

in Miehe et al. (2010a) , is used in order to ensure the local crack driving force is nondecreasing. Note that in the equation

below, t , is a pseudo-time variable related to the incremental external loading. Additionally, we employ the purely numerical

viscous regularization with viscosity parameter, η, phase field at the previous time increment, d n , and time increment, �t ,

presented by Miehe et al. (2010a, 2015) . The reader is referred to these works for additional details regarding this numerical

regularization. This viscous term is included in the quasi-static setting in order to prevent large jumps in the crack length

over a given time increment. In the context large deformations, this is particularly important since large jumps in crack

length are also typically accompanied by large changes in the displacement field which may result in inverted elements

during the displacement update and potential failure of the simulation. The final equation governing the evolution of the

phase field is provided below. 

η
d − d n 

�t 
+ �c 

(
d − l 2 0 ∇ 0 · ∇ 0 d 

)
− (1 − d) H = 0 (2.18)

where H(X , t) = max 
τ∈ [0 ,t] 

〈
�+ 

e (X , τ ) − �c 

〉
+ (2.19)

Note that the Macaulay brackets are defined such that 〈 ·〉 + = max (·, 0) . 
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2.1.3. Plane stress enforcement 

The experiments presented herein are generally well-represented by a state of plane stress. Due to the large computa-

tional burden of the three-dimensional formulation, we reduce the equations to a two-dimensional plane stress state. The

derivation of the reduced first Piola-Kirchoff stress and the associated analytical consistent tangent are provided in this

section. 

We begin with the specific three-dimensional first Piola-Kirchoff stress as obtained from the undamaged stored elastic

energy density provided in Eq. (2.7) . 

P = 

∂�e ( I 1 , J) 

∂F 
= κ log (J) F −T + μJ −2 / 3 

(
F − I 1 

3 

F −T 
)

(2.20) 

The Kirchoff stress may then be obtained via right multiplication of the deformation gradient transpose, resulting in 

τ = P · F T = κ log (J) I + μJ −2 / 3 
(

B − I 1 
3 

I 

)
(2.21) 

in which I represents the second order identity tensor and B = F F T signifies the left Cauchy-Green deformation tensor. For

a state of plane stress we have the following constraints on the Kirchoff stress (equivalently, these represent constraints on

the Cauchy stress since the two stress measures only differ by the positive scalar multiple, J ), 

τ13 = τ31 = 0 ⇒ B 13 = B 31 = 0 (2.22) 

τ23 = τ32 = 0 ⇒ B 23 = B 32 = 0 (2.23) 

τ33 = κ log (J) + μJ −2 / 3 
(

B 33 − I 1 
3 

)
= 0 (2.24) 

Assuming that the deformation gradient takes the following structure, 

F = 

[ 

F 11 F 12 0 

F 21 F 22 0 

0 0 λ

] 

(2.25) 

where λ is the out-of-plane stretch, one sees that Eqs. (2.22) and (2.23) are automatically satisfied. Eq. (2.24) , however,

cannot be trivially satisfied and reduces to the following nonlinear equation. 

f ≡ λ2 + 

κ

μ
J 2 / 3 log (J) + 

I 1 
3 

= 0 (2.26) 

Subsequently, the constitutive equations are reduced by using indicial notation combined with Einstein’s summation con-

vention where Greek indices may vary from 1 to 2 only and represent the tensorial in-plane components. Defining the

following reduced invariants, 

i 1 = F αβF αβ (2.27) 

j = F 11 F 22 − F 12 F 21 (2.28) 

we have I 1 = i 1 + λ2 and J = jλ, reducing Eq. (2.26) to 

f ≡ λ2 + 

3 κ

2 μ
( jλ) 2 / 3 log ( jλ) − i 1 

2 

= 0 (2.29) 

Due to our choice of elastic energy density, the above scalar equation is nonlinear in the out-of-plane stretch, λ, and is

solved numerically with a local newton iteration. 

Once λ is determined, the reduced first Piola-Kirchoff stress may be computed via substitution of the above expressions

and differentiation of each component with respect to F αβ to obtain P αβ = P v ol 
αβ

+ P iso 
αβ

. 

P v ol 
αβ = 

∂�v ol 
e 

∂F αβ
= κ log ( jλ) T αβ (2.30) 

P iso 
αβ = 

∂� iso 
e 

∂F αβ
= μ( jλ) 

−2 / 3 

(
E αβ − i 1 + λ2 

3 

T αβ

)
(2.31) 

where we have defined, 

T αβ ≡ F −T 
αβ

+ 

1 

λ

∂λ

∂F αβ
(2.32) 
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E αβ ≡ F αβ + λ
∂λ

∂F αβ
(2.33)

The derivative ∂λ
∂F αβ

may be obtained by differentiating Eq. (2.29) with respect to F αβ . After some algebra, the following

expression results, 

∂λ

∂F αβ
= 

F αβ − 3 κ
2 μ ( jλ) 2 / 3 

(
2 
3 

log ( jλ) + 1 

)
F −T 
αβ

2 λ + 

3 κ
2 μ j 2 / 3 λ−1 / 3 

(
2 
3 

log ( jλ) + 1 

) (2.34)

In order to solve the global Newton system efficiently the analytical consistent tangent tensor is derived and used in

computation of the global tangent stiffness matrices. Although this derivation is rather long and tedious, we believe that

this is an essential component of the method in order to ensure some degree of robustness when coupled with phase field

fracture since very large deformations often result. 

We begin by defining each component of the consistent tangent separately as is done in Eqs. (2.30) and (2.31) above

where the total consistent tangent may be written C = C 

v ol + C 

iso . 

C 

v ol 
αβγ δ = 

∂P v ol 
αβ

∂F γ δ
= κ log ( jλ) 

∂T αβ

∂F γ δ
+ κT αβT γ δ (2.35)

C 

iso 
αβγ δ = 

∂P iso 
αβ

∂F γ δ
= μ

(
E αβ − i 1 + λ2 

3 

T αβ

)
∂( jλ) −2 / 3 

∂F γ δ

+ 

μ

( jλ) 2 / 3 

(
∂E αβ

∂F γ δ
− 1 

3 

(
∂(i 1 + λ2 ) 

∂F γ δ
T αβ + (i 1 + λ2 ) 

∂T αβ

∂F γ δ

))
(2.36)

The unspecified derivatives in the above expressions may then be expressed via the following relations. 

∂( jλ) −2 / 3 

∂F γ δ
= −2 

3 

( jλ) −2 / 3 T γ δ (2.37)

∂(i 1 + λ2 ) 

∂F γ δ
= 2 F γ δ + 2 λ

∂λ

∂F γ δ
(2.38)

∂T αβ

∂F γ δ
= −F −1 

δα
F −1 
βγ

+ 

1 

λ

∂ 2 λ

∂ F αβ∂ F γ δ
− 1 

λ2 

∂λ

∂F αβ

∂λ

∂F γ δ
(2.39)

∂E αβ

∂F γ δ
= δαγ δβδ + λ

∂ 2 λ

∂ F αβ∂ F γ δ
+ 

∂λ

∂F αβ

∂λ

∂F γ δ
(2.40)

The final unspecified derivative is the second derivative of the out-of-plane stretch with respect to the in-plane compo-

nents of the deformation gradient. Labeling the numerator of Eq. (2.34) N αβ and the denominator D we differentiate each

expression and use the quotient rule to obtain the final expression. 

Let c 1 ≡ ( jλ) 2 / 3 
(

log ( jλ) + 

3 

2 

)
(2.41)

N αβ ≡ F αβ − c 1 
κ

μ
F −T 
αβ

(2.42)

D ≡ 2 λ + 

κc 1 
μλ

(2.43)

Differentiating the numerator and the denominator of Eq. (2.34) we obtain, 

∂N αβ

∂F γ δ
= − κ

μ

(
F −T 
αβ

∂c 1 
∂F γ δ

− c 1 F 
−1 
δα

F −1 
βγ

)
+ δαγ δβδ (2.44)

∂D 

∂F γ δ
= 2 

∂λ

∂F γ δ
+ 

κ

μ

(
− c 1 

λ2 

∂λ

∂F γ δ
+ 

1 

λ

∂c 1 
∂F γ δ

)
(2.45)

∂c 1 
∂F γ δ

= ( jλ) 2 / 3 
(

2 

3 

log ( jλ) + 2 

)
T γ δ (2.46)

Combining these expressions we obtain the final required derivative. 

∂ 2 λ = 

D 

∂N αβ

∂F γ δ
− N αβ

∂D 
∂F γ δ

2 
(2.47)
∂ F αβ∂ F γ δ D 
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2.2. Finite element discretization 

The weak form of the governing equations is obtained in the usual manner by multiplication of the strong form equations

with admissible test functions, integration over the domain, and application of the divergence theorem. The test functions

are denoted w 

u and w 

d for the linear momentum and phase field equations, respectively. The residual form of the equations

for the displacement field, R u , and phase field, R d , can then be written as follows where we have omitted any traction

boundary conditions. 

R u = 

∫ 
�0 

P : ∇ 0 w 

u dV = 0 (2.48) 

R d = 

∫ 
�0 

(
η

�t 
( d − d n ) w 

d + �c d w 

d + �c l 
2 
0 ∇ 0 d · ∇ 0 w 

d − (1 − d) H w 

d 
)

dV = 0 (2.49) 

We search for u i ∈ S u i and d ∈ S d such that Eqs. (2.48) and (2.49) are satisfied ∀ w 

u 
i 

∈ V w 

u 
i 

and ∀ w 

d ∈ V w 

d where these func-

tion spaces are defined below. 

S u i = { u i | u i ∈ H 

1 u i = 

ˆ u i on ∂�u 
0 } (2.50) 

S d = { d | d ∈ H 

1 } (2.51) 

V w 

u 
i 

= { w 

u 
i | w 

u 
i ∈ H 

1 w 

u 
i = 0 on ∂�u 

0 } (2.52)

V w 

d = { w 

d | w 

d ∈ H 

1 } (2.53) 

Laying the groundwork for the staggered update of the displacement and phase field introduced later, we linearize

Eq. (2.48) with respect to u and Eq. (2.49) with respect to d (note that although Eq. (2.49) is already a linear equation

in d we update the phase field incrementally in a Newton-like manner). 

R u (u 

(k +1) , d (k ) ) ≈ R u (u 

(k ) , d (k ) ) + DR u (u 

(k ) , d (k ) )[ δu ] = 0 (2.54)

R d (u 

(k +1) , d (k +1) ) ≈ R d (u 

(k ) , d (k ) ) + DR d (u 

(k ) , d (k ) )[ δd] = 0 (2.55)

The directional derivatives above may be expressed as 

DR u (u 

(k ) , d (k ) )[ δu ] = 

∫ 
�0 

∇ 0 w 

u : C : ∇ 0 δu dV (2.56)

DR d (u 

(k ) , d (k ) )[ δd] = 

∫ 
�0 

((
�c + H + 

η

�t 

)
δd w 

d + �c l 
2 
0 ∇ 0 δd · ∇ 0 w 

d 
)

dV (2.57) 

where C is the previously provided fourth order constitutive tensor. 

The linearized equations above are then discretized and solved incrementally using the finite element method with ap-

propriately chosen finite dimensional subspaces ( S h u i 
⊂ S u i , S 

h 
d 

⊂ S d , V h w 

u 
i 

⊂ V w 

u 
i 
, V h 

w 

d 
⊂ V w 

d ). The 2D domain is partitioned

using 4-node quadrilateral elements and the typical bilinear Lagrange basis functions are used for the test and trial spaces,

consistent with the standard Galerkin formulation. We represent these field approximations with the shape function matri-

ces, N 

u and N 

d , for the displacement and phase field, respectively. The corresponding matrices of shape function gradients

are represented analogously by B 

u and B 

d . 

u ≈ u h = N u ū d ≈ d h = N d d̄ 

δu ≈ δu h = N u ¯δu δd ≈ δd h = N d δ̄d 

w 

u ≈ w 

u h = N u w̄ 

u w 

d ≈ w 

d h = N d w̄ 

d 

Substituting these approximations along with their gradients into Eqs. (2.54) and (2.55) , and invoking the arbitrariness

of the vectors w̄ 

u and w̄ 

d , we can identify the discrete elemental residual vectors and jacobian matrices, 

R 

e (k ) 

ū = 

∫ 
�0 

P (k ) : B 

u dV = 0 (2.58) 

J e 
(k ) 

ū = 

∫ 
�0 

B 

u : C 

(k ) : B 

u dV (2.59) 

R 

e (k ) 

d̄ 
= 

∫ 
�

(
�c 

(
N 

d T N 

d + l 2 0 B 

d T B 

d 
)
d̄ 

(k ) 
)
d V + 

∫ 
�

η

�t 
N 

d T N 

d 
(
d̄ 

(k ) − d̄ n 

)
d V −

∫ 
�

(1 − N 

d d̄ 

(k ) ) N 

d T H dV = 0 (2.60) 

0 0 0 
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J e 
(k ) 

d̄ 
= 

∫ 
�0 

((
�c + H + 

η

�t 

)
N 

d T N 

d + �c l 
2 
0 B 

d T B 

d 
)

dV (2.61)

where the e superscript signifies elemental quantities and the operation A : B represents the double contraction of tensors

A and B . Additionally, the ( · ) ( k ) notation implies that the quantity ( · ) is evaluated using the relevant field variables

at iteration k . The elemental quantities are then assembled into the global residual vectors and jacobian matrices via the

standard finite element assembly operators. 

R 

(k ) 
ū 

= A 

N elem 

e =1 
R 

e (k ) 

ū J (k ) 
ū 

= A 

N elem 

e =1 
J e 

(k ) 

ū (2.62)

R 

(k ) 

d̄ 
= A 

N elem 

e =1 
R 

e (k ) 

d̄ 
J (k ) 

d̄ 
= A 

N elem 

e =1 
J e 

(k ) 

d̄ 
(2.63)

These global quantities are then used separately to compute the Newton-type correction of the displacement and phase

field nodal variables. 

ū 

(k +1) = ū 

(k ) − J (k ) −1 

ū 
R 

(k ) 
ū 

(2.64)

d̄ 

(k +1) = d̄ 

(k ) − J (k ) −1 

d̄ 
R 

(k ) 

d̄ 
(2.65)

Algorithm 1 provides the details of the iterative staggered solution used herein. Note that this scheme is essentially

Algorithm 1 Staggered update of nodal degrees of freedom, ( ̄u , d̄ ). 

1. t ← 0 

2. ū , d̄ ← 0 

3. while t < t f inal do 

4. t ← t + �t

5. ˆ u ← t · ˆ u f inal {Update prescribed displacements} 

6. k ← 0 

7. while || R 

(k ) 
ū 

|| 2 / || R 

(0) 
ū 

|| 2 > 10 −8 do 

8. k ← k + 1 

9. Update ū via Equation 2.64 

10. end while 

11. Update H with updated ū 

12. k ← 0 

13. while || R 

(k ) 

d̄ 
|| 2 / || R 

(0) 

d̄ 
|| 2 > 10 −8 do 

14. k ← k + 1 

15. Update d̄ via Equation 2.65 

16. end while 

17. end while 

identical to that of Miehe et al. (2010a) . Sufficiently small applied displacement increments are chosen such that the results

are indistinguishable under further reduced load incrementation. During crack propagation the displacement increment is

significantly reduced from an initial value of approximately 10 −4 [ mm ] to a value of 10 −6 [ mm ]. We also note the use of a

backtracking line search that is employed occasionally during the displacement update in order to ensure the determinant

of the deformation gradient ( J ) is strictly positive at all quadrature points in the discretized domain. If this requirement

is violated following an update of the displacement field, the newton increment, δu , is reduced by a constant multiplier,

0 < γ < 1, until the condition is satisfied. Subsequently, the displacement newton iteration is allowed to continue to con-

vergence. Although this procedure is rarely required, it has proven to be an effective strategy for delaying failure of the nu-

merical simulations in certain instances. The jacobian and residual equations are integrated using a standard 4-point Gauss

quadrature rule for a quadrilateral element and the irreversibility requirement is enforced via a history variable stored at

each quadrature point. 

3. Numerical and experimental methods 

3.1. Design of the composite samples 

In this section we outline the process used to study the failure mechanism of 3D-printed polymer composites undergoing

large deformation both experimentally and numerically. A specific parameterized geometry is proposed in order to study
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Fig. 2. Geometric parameterization, NxxDyy, in which xx and yy are illustrated graphically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

this behavior which consists of a soft matrix, within which three stiff circular inclusions are embedded as shown in Fig. 2 .

Additionally, two notches of various lengths are introduced in the middle of the specimen. By varying the distance between

stiff inclusions and the notch lengths, we are able to alter the failure sequence. 

In total, 9 different geometries (3 initial notch lengths and 3 distances between inclusions) are subjected to uniaxial ten-

sion until complete failure of the specimen. We adopt the short notation N__D__ to describe the geometry of the specimens

that reflects the notch length as well as spacing between rigid inclusions. For instance, the notation N05D18 corresponds

to a specimen with an 18 [ mm ] distance between inclusion centers and an initial notch length corresponding to 5% of the

total specimen width. This is illustrated graphically in Fig. 2 , below. Note that the out-of-plane thickness of all samples is

2.5 [ mm ]. 

3.2. Experimental testing 

The composite specimens with the selected geometries (see Fig. 2 ) were produced by multimaterial PolyJet 3D-printing

using a Stratasys Object Connex 3 printer that supports fabrication of specimens containing up to 3 materials simultane-

ously. The matrix of the composite was printed using soft elastomeric TangoBlackPlus material (TP), while stiff VeroWhite

(VW) material was selected for the inclusions. The printed specimens were subjected to uniaxial tension using the universal

testing machine Shimadzu EZ-LX with a low strain rate of 10 mm/min to avoid dynamic effects and decrease the influence

of rate-dependent TP material behavior. For consistency all samples were printed with the same orientation in the building

tray, even though supplementary tests verified that the printing orientation has only minor effect on the failure behavior.

The deformation process was captured using a CMOS camera, enabling the use of digital image correlation (DIC) to estimate

the strain field within the soft matrix prior to crack initiation. 

3.3. Numerical investigation 

The numerical formulation was implemented using the open-source, C++ finite element library, deal.II Arndt et al. (2019) ,

and PETSc ( Balay et al., 2019 ) for parallel, sparse linear algebra. First, the elastic parameters for the soft TP material were es-

timated from select homogeneous uniaxial tension experiments. Near incompressibility was assumed and the bulk modulus

was taken to be 100 times the calibrated shear modulus of 0.24 [ MPa ], resulting in an initial Poisson’s ratio of approximately

0.495. These are consistent with previously reported material parameters ( Slesarenko and Rudykh, 2018 ). The stiff VW in-

clusions may effectively be regarded as rigid due to their high stiffness relative to TP. The elastic modulus as reported on

the manufacturer’s data sheet ( ver, 2018 ) is in the range 2 , 0 0 0 − 3 , 0 0 0 [ MPa ]. For the purpose of the numerical studies

presented herein, we assume the material has an approximate Poisson’s ratio of 0.4. Using the lower bound on the elastic

modulus from the manufacturer we estimate the shear modulus of the rigid material to be 714 [ MPa ] and bulk modulus

to be 3.33 [ GPa ], based on the standard theory of isotropic, linear elasticity (i.e. μ = E/ (2(1 + ν)) and κ = E/ (3(1 − 2 ν)) ).

The finite element size is approximately l 0 /6 in all regions in which cracks may nucleate or propagate and the boundary

conditions are illustrated in Fig. 3 below. Note that in order to obtain numerical predictions more consistent with experi-

ments, we break the symmetry about the vertical axis by applying a small shift of the center inclusion (0.1% of the specimen

width). This 0.024 [ mm ] shift is less than the 0.1 [ mm ] “accuracy” asserted by the manufacturer ( pol, 2018 ) and the 0.03

[ mm ] layer thickness. 

The material parameters used in subsequent numerical analyses are provided in Table 1 . In this work, rather than em-

ploying a complex calibration procedure for the phase field model parameters, we set the length scale parameter as small
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Fig. 3. Boundary conditions imposed in numerical simulations. The left edge is fixed while a displacement is applied to the right edge. 

Fig. 4. Predicted crack initiation comparison for (a) N05D18 and (b) N20D30. Note that the plots are clipped at a phase field value of 0.95. 

Table 1 

Material parameters. 

κ [ MPa ] μ [ MPa ] l 0 [ mm ] �c [ N·mm 
mm 3 

] 

TangoBlackPlus 24 0.24 0.5 0.34 

VeroWhite 3,330 714 0.5 1.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as possible based on computational limitations ( l 0 = 0 . 5 mm similar to the 0.5504 mm obtained for a rubber material by

Loew et al. (2019) ) and adjust the critical energy density ( �c = 0 . 34 N 
mm 

2 ) in order to approximately match the failure

stretch of only one (i.e. the N10D24) experiment. The resulting parameter set gave reasonably predictive results for the

other experiments with different geometries. The same length scale parameter is used for the stiff inclusions and the

critical energy density is estimated using the approximation �c = σ 2 
c / (2 E) with a critical stress of 65 MPa (correspond-

ing to the tensile strength estimated by the manufacturer). Note that since the stiff inclusions are not directly loaded,

the strain energy density of the inclusion material never exceeds the critical threshold and consequently has little to no

effect on the numerical predictions. In the future, a more complex calibration procedure such as the one outlined in

Loew et al. (2019) may be employed. Furthermore, future studies introducing stochasticity may be conducted in order to

identify the material parameters (see Rappel et al. (2019) for example) and better understand the effect of uncertainty in

their value (see Hauseux et al. (2018) for an example regarding hyperelasticity). 

Multiple simulations were performed corresponding to the experimentally tested geometric configurations. For particular

combinations of the initial notch length and distance between inclusions, cracks initiate either between inclusions or at the

notch tip as illustrated in Fig. 4 . Here we note that when cracks initiate near the rigid inclusion pole rather than at the

notch tip, this is likely related to cavitation resulting from the stress triaxiality as is discussed in Volokh and Aboudi (2016) .

The relationship between this phenomenon and fracture has also been recently investigated by Raayai-Ardakani et al. (2019) .

Additionally, it should be mentioned that due to the large stretch ratios that soft materials generally exhibit prior to failure,

stress concentrators such as notches are typically significantly blunted. This generally results in lower sensitivity to notches

when compared with materials that are significantly stiffer. Nonetheless, our numerical/experimental results do indicate that

a sufficiently large notch will indeed lead to crack initiation at the notch tip. 
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Fig. 5. Stretch comparison for N20D30 at a prescribed end-displacement of 6.6mm compared with DIC image. 

Fig. 6. Stretch comparison for N05D18 at a prescribed end-displacement of 11.8mm compared with DIC image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Pre-fracture strain field comparison 

In order to validate the employed elastic strain energy density, we compare the calculated strain field in the specimen

before fracture with the strain field observed experimentally using DIC. As illustrated in Fig. 5 for specimen N20D30, the

strain localization is observed between inclusions as well as near the initial notch tip, both numerically and experimen-

tally. However, in specimen N05D18 the strain primarily localizes between inclusions rather than near the notch tip ( Fig. 6 ).

A minor difference between the numerically-estimated and experimentally-observed strain fields occurs near the bound- 

ary of the rigid inclusions (compare Fig. 6 (a) and (b)). This phenomenon may be attributed to the actual non-uniform

out-of-plane deformation near the rigid inclusions, which may not be accurately captured by the employed plane stress

numerical approximation (see Appendix A ). Note that we do not use the data obtained by DIC for model calibration. See

Loew et al. (2019) for an example where DIC data is used in conjunction with force-displacement results in order to calibrate

the fracture parameters of the model. 

4. Numerical and experimental studies 

In this section we investigate the effects of the initial notch length and distance between inclusions on the failure pattern

of the polymer composites, both numerically and experimentally. First, we compare the qualitative failure pattern via a

side-by-side comparison of failure sequences for a few representative geometries in Section 4.1 . Second, we provide the

force versus displacement curves for comparison in Section 4.2 , and an illustration of the numerically and experimentally

computed external work to failure is provided in Section 4.3 . 

4.1. Failure sequence comparisons 

First, we provide a qualitative comparison of the experimental and numerical failure patterns for a few representative

geometries. For the samples with the largest distance between inclusions ( D = 30 [ mm ]) and both the smallest (N05D30

in Fig. 7 ) and the largest (N20D30 in Fig. 8 ) initial notch lengths, it is clear that the fracture nucleates at the notch tip.

This indicates that the inclusions are a sufficient distance apart to prevent substantial elastic energy accumulation between

inclusions with respect to the elastic energy accumulated near the notch tip. In both cases it is observed that once the

initial crack is arrested by the center inclusion, a secondary fracture surface nucleates between inclusions. In the case of

N05D30, it is observed that although the initial crack has begun propagating around the center inclusion, Fig. 7 (f) shows

the nucleation of new fracture surface on both the left and right side of the inclusion. It is interesting that the initiation of

new fracture surface on both sides of the center inclusion is also predicted numerically (see Fig. 7 (e)). 

In the case of the larger initial notch length corresponding to the N20D30 geometry, Fig. 8 (f) shows a secondary crack ini-

tiation more clearly since we experimentally observe the initial cracks do not begin propagating around the center inclusion

before the secondary crack initiates and propagates. In contrast with N05D30, Fig. 8 (e) shows secondary crack initiation

on only one side of the center inclusion in somewhat remarkable correspondence with the experimental observation in

Fig. 8 (f). A very similar pattern is observed for the N20D24 geometry with the same initial notch length and smaller dis-
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tance between inclusions. Fig. 9 illustrates the initial fracture surface nucleation and propagation from the notch tip, with

subsequent nucleation and propagation of a secondary crack on only one side of the center inclusion. 

Once the inclusions are sufficiently close together cracks typically initiate between the inclusions rather than at the ini-

tial notch tip. Fig. 10 illustrates the failure sequence for the N10D18 geometry. It is interesting to note that the phase field

formulation is capable of capturing not only the location of initiation of the first crack, but also the subsequent mild crack

evolution at the notch tip as shown in Fig. 10 (e) and (f). Note that this mild secondary initiation does not occur for the

N05D18 geometry with smaller initial notch length as illustrated in Fig. 11 . Additionally, we note that while the sequences

shown in Figs. 7 and 10 generally exhibit failure at similar global stretch values ( � = 

current length 
initial length 

), for other samples we

do not have ideal agreement between experiments and simulations with respect to the global stretch values (although we

do have a nearly perfect qualitative match). In general, this discrepancy is expected due to the complexity of the TP ma-

terial properties and/or inconsistency in the 3D-printing process (factors that may not be sufficient to describe using the

single failure parameter of the employed numerical model). Nevertheless, very good agreement between the experimen-
Fig. 7. N05D30 crack initiation sequence at different values of global stretch, �. Numerical results (left column) and experimental results (right column). 
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Fig. 8. N20D30 crack initiation sequence at different values of global stretch, �. Numerical results (left column) and experimental results (right column). 

 

 

 

 

 

 

 

tally observed failure sequences and numerical predictions once again illustrates the promising capability of the proposed

formulation to assess the overall fracture behavior of the 3D-printed composites undergoing large deformations. 

4.2. Force versus displacement response 

While in the previous section we focus on the qualitative failure behavior of the 3D-printed composites, here we exam-

ine the quantitative prediction via force-displacement curves. Fig. 12 illustrates the experimental curves and corresponding

numerical predictions (note that only one experiment for each geometry is shown for clarity). It is clear that an increase in

the notch length leads to the slight decrease in the effective structural stiffness and a decrease in the critical strain at which

crack initiation and subsequent catastrophic failure occur. This trend is also confirmed by the numerical simulations for all

geometries irrespective of the distance between inclusions. Comparison between corresponding experimental and numerical 

data reveals very good agreement while the structures are loaded elastically, although minor under-prediction of the struc-
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Fig. 9. N20D24 crack initiation sequence at different values of global stretch, �. Numerical results (left column) and experimental results (right column). 

 

 

 

 

 

 

 

 

 

 

 

tural stiffness is observed when the inclusions are closest together (corresponding to D = 18 [ mm ]). This can be explained

by the absence of the out-of-plane stiffening effect near the rigid inclusions in the proposed plane stress formulation (see

Appendix A ). 

Discrepancies are observed between experimental and numerical force-displacement curves only after crack initiation.

As mentioned in the previous section, this is expected due to the very complex behavior of the soft 3D-printed material

during failure. While the numerical prediction is not perfect, it is still fascinating that the numerical model with its simpli-

fying assumptions (e.g. quasi-static, isotropic, rate-independent hyperelastic model in plane stress with a single numerical

failure parameter, �c ) is capable of qualitatively describing the failure behavior of the considered composite structures. For

instance, we observe the force decrease due to crack initiation and subsequent force increase after crack arrest both numer-

ically and experimentally when the inclusions are sufficiently far apart (e.g. D = 30 [ mm ]). Furthermore, the specimens in

which the inclusions are closest together ( D = 18 [ mm ]) fail catastrophically without crack arrest. Recall that in the former

case cracks initially nucleate at the notch tip, while in the latter case cracks nucleate between the inclusions and exhibit
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Fig. 10. N10D18 crack initiation sequence at different values of global stretch, �. Numerical results (left column) and experimental results (right column). 

 

 

 

 

 

 

 

 

 

 

 

fast subsequent crack propagation. These phenomena are illustrated briefly in Appendix B , while the numerically predicted

crack initiation behavior at the notch tip is also briefly investigated in Appendix C through comparison with contour integral

calculations. 

In Fig. 13 below, we present the numerically predicted force versus displacement curves grouped by notch length where

we have included the numerical prediction for the homogeneous material without inclusions for comparison. For complete-

ness, additional numerical simulations were performed using an initial notch length corresponding to 15% of the total width

(i.e. N15D__), a distance between inclusions of 21 [ mm ] (i.e. N__D21), and 27 [ mm ] (i.e. N__D27) for a total of 20 numeri-

cally obtained values. In addition, the peak forces for each notch length are illustrated in Fig. 14 (a) along with the predicted

results for the homogeneous case. It is clearly observed that for N10, N15, and N20 the inclusions provide a significant in-

crease in strength (peak force) irrespective of the distances between the inclusions studied herein. However, the situation

is quite different for the shortest notch length N05 in which the inclusions must be sufficiently far apart in order to obtain

an increase in strength when compared to the pure polymer case. We also note the presence of the local maximum for
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Fig. 11. N05D18 crack initiation sequence at different values of global stretch, �. Numerical results (left column) and experimental results (right column). 

 

 

 

 

 

 

 

 

the N05 case which suggests that there is an optimal distance between inclusions that will maximize the strength. Spacing

the inclusions closely together (e.g. D = 18 ) in this case clearly results in worse performance when compared to the homo-

geneous result. Finally, we highlight the fact that the addition of the rigid inclusions, when appropriately spaced, seem to

also increase the structural failure stretch in all cases except for N05 where the is a marginal improvement when compared

with N05D27. This is quite an interesting result since it is not unusual for the failure stretch to decrease with the addition

of rigid particles (see Wu et al. (2016) for instance). 

4.3. External work comparison 

While comparison between the failure sequences and force-displacement curves provides important insight into the be-

havior of proposed composite structures, we also provide the external work to failure as an additional quantitative measure

for comparison. The external work to failure is computed via numerical integration of the force versus displacement curves
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Fig. 12. Experimental and numerical force versus displacement curves grouped by the geometric distance between inclusions ( D ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

presented in the previous section. Fig. 15 below provides a simple visual comparison of the numerically and experimentally

obtained external work. 

Here we highlight the non-trivial appearance of a local maximum between N05D24 and N05D30. This likely occurs due

to the approximate equality between the inclusion spacing and the space between outer inclusions and the rigid boundary

for sample N05D27, which may contribute to the external work increase as a result of the more “uniform” load distribution

in the soft matrix. We note this in addition to the peculiar shape of the surface near N10D21 where numerically we observe

a deviation from the general trend. This deviation occurs during the transition between cracks nucleating at the initial notch

tip and cracks initiating between inclusions. The N10D21 geometry results in predicted cracks initiating at both the initial

notch tip and between inclusions, seemingly simultaneously. This simultaneous initiation of multiple cracks leads to the

increase in the displacement required to finally separate the structure, which results in additional area under the force-

displacement curve. Consistent with previously presented results, we see that the numerical model is capable of capturing

the general trend of the experimental results. 

The numerically predicted external work versus distance between inclusions is presented in Fig. 14 (b) along with the

prediction for the homogeneous case without inclusions. In this figure we see the toughening effect explicitly associated

with the addition of the rigid inclusions (i.e. the potential increase in external work required for complete structural failure

resulting from the inclusion addition). However, for both the N05 and N10 cases the situation is not very straight-forward

since there appears to be a minimum distance between inclusions in order to improve this measure of structural toughness.

This is likely also true for the N15 and N20 cases but not for the range of distances between inclusions that we have

studied herein (if one extrapolates the curves from D = 18 to D = 16 they would likely intersect the pure polymer case as

well). Also, the appearance of the local maxima for the N05 and N10 cases clearly demonstrates that the optimal inclusion

spacing for structural toughness is not a trivial matter. However, the curves do clearly show that spacing the inclusions too

close together can certainly have a negative impact on the structure’s mechanical performance. 
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Fig. 13. Numerical force versus displacement curves grouped by notch length along with the numerical prediction for the homogeneous case without 

inclusions for comparison. 

Fig. 14. Numerically predicted (a) peak forces and (b) external work versus distance between inclusions for each notch length. Additionally, a horizontal 

dotted line (with marker style of the corresponding notch length) signifies the predicted value for the homogeneous case without inclusions. Figure (b) is 

discussed in the following subsection but placed alongside (a) for ease of comparison. 
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Fig. 15. The numerically computed external work surface viewed from various angles along with the relevant experimentally computed data points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Concluding remarks 

In this work we investigate the failure of 3D-printed polymer composites comprised of a soft matrix with stiff inclu-

sions. The composites are fabricated through multimaterial 3D-printing and uniaxial tests are performed to investigate their

mechanical behavior and failure mechanisms. In order to obtain a more detailed picture of the underlying physics, we nu-

merically simulate the failure of the composite structures using the phase field fracture method with an energetic threshold

using an efficient plane-stress formulation. The two-dimensional numerical formulation is provided and the reduced consis-

tent tangent tensor is analytically derived. 

It is demonstrated, both experimentally and numerically, that changes in particular geometric parameters (e.g. inclusion

spacing and initial notch length) have a strong impact on the resulting failure sequence and overall structural resistance to

failure. Although the numerical model is derived with several simplifying assumptions, the results demonstrate that it is ca-

pable of capturing the complex large deformation failure sequences of the 3D-printed composite structure presented herein.

This includes a non-trivial secondary crack initiation and propagation in the bulk material consistent with the corresponding

experimental observations. 

Additionally we highlight an interesting behavior of the structures studied herein that is of practical interest. We have

observed that the addition of stiff inclusions results in an expected improvement in the structure’s mechanical properties

(namely, the strength, toughness, and stiffness). However, the situation is not as obvious as one might expect. Spacing the

inclusions too closely can clearly result in a degradation of structural strength and toughness. This has been demonstrated

both experimentally and numerically. Not only does there appear to be a minimum inclusion spacing to be effective with

respect to the homogeneous matrix case, but we have also numerically observed an optimal inclusion spacing which maxi-

mizes the structural strength and toughness (this is most clearly observed for the case with the shortest initial notch length).
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Finally, we acknowledge that rate-dependent effects may be significant during crack propagation and their inclusion

may improve the accuracy of the predictions. Future numerical and experimental study should elaborate on the ob-

served failure behavior by considering more complex geometries while taking into account the viscous behavior of th

e material. 
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Appendix A. Validation of plane stress approximation 

In an effort to validate the choice of a plane stress assumption versus the alternative plane strain assumption in

two space dimensions, we provide numerical evidence with a single representative geometry investigated in this work.
Fig. A.16. Boundary conditions for plane stress validation problem. 

Fig. A.17. Lines along which the strain energy density is compared. In three-dimensions the lines lie in the plane at the center of the out-of-plane thickness. 
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Fig. A.18. Line plots of strain energy density along (a) Line A and (b) Line B as illustrated in Fig. A.17 . 

Fig. A.19. Force vs. displacement curves illustrating the consistency of the plane stress approximation with that of the three-dimensional formulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Numerical simulations without the phase field fracture physics were performed utilizing the plane stress assumption, a

plane strain formulation, and the full three-dimensional representation. The plane strain and three-dimensional simula- 

tions were performed using exactly the same form of strain energy density used in this work (namely, Eq. (2.7) ) and

volumetric-locking is alleviated using a standard mean-dilatation formulation consistent with Bonet and Wood (2008) . For

the three-dimensional analyses, we use a standard 8-node hexahedral element with tri-linear Lagrange shape functions. An

identical in-plane mesh is created for all three cases and the three-dimensional mesh is created by extruding this two-

dimensional mesh in the out-of-plane direction with 6 elements through the specimen thickness. We choose an initial

notch length corresponding to 10% of the specimen width and a distance between inclusion centers of 24 [ mm ]. Symme-

try is employed and one-quarter of the geometry is modeled with relevant symmetric boundary conditions as illustrated

in Fig. A.16 (note that we may employ symmetric boundary conditions in this instance since the center inclusion is not

shifted). 

Identical elastic material parameters are used for all three models, corresponding to those provided in Section 3.3 .

Each model is subjected to a representative prescribed displacement of 7.5 [ mm ] which corresponds to 15 [ mm ] of

stretch when symmetry is not employed. The plane stress assumption is then justified using the plots of the strain

energy density in Fig. A.18 , along the lines shown in Fig. A.17 (note that these two regions correspond to those in

which cracks typically initiate). Additionally we provide the relevant force-displacement curves for the global problem

in Fig. A.19 . 

The strain energy density near the notch tip is clearly best approximated in two-dimensions via a plane stress assumption

as evidenced by the line plot in Fig. A.18 (a). The strain energy density between inclusions illustrated in Fig. A.18 (b) follows

the same general trend as shown for the three-dimensional case, however, plane stress slightly under-predicts this quantity

due to the out-of-plane stiffening effect of the rigid inclusions. This stiffening effect also manifests itself in terms of the
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overall force versus displacement curves provided in Section 4.2 . For a distance between inclusions of 18 [ mm ] the under-

predicted stiffness is clearly visible. However, for the geometry investigated in this section, Fig. A.19 shows very minor

stiffness deviation with respect to the three-dimensional formulation. It is also clear from this figure that a plane strain

approximation significantly over-predicts the external load, further justifying the use of the plane stress approximation used

in this work. 

Appendix B. Force-displacement correlation with failure sequences 

Here we briefly illustrate a few key points on the force-displacement curves previously presented, correlated

with the system state for two representative examples: one in which the initial crack forms between inclusions

and one in which it initiates from the notch tip. These two types of behavior are exhibited in the set of force-

displacement curves provided in Section 4.2 . Generally, initiation between inclusions is accompanied by a force-

displacement response with a single peak and subsequent steep decline to zero force. This is demonstrated for N10D18

in Fig. B.20 with states A1-A2. In the other case, the crack initiates at the notch tip, propagates until it is arrested

by the center inclusion, and stiffening occurs until either the crack continues around the inclusion or a secondary

crack initiates between inclusions. This is demonstrated for the N10D30 case below with sequence snapshots labeled
B1-B4. 

Fig. B.20. (A1 - A2) N10D18 and (B1 - B4) N10D30 numerical snapshots. 
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Appendix C. J-Integral calculations 

In an effort to further analyze the crack initiation behavior of the phase field method employed herein, contour integrals

are computed for certain geometries at the numerically predicted crack initiation point. The commercial finite element

code, ABAQUS ( aba, 2019 ), is used to perform the J-Integral ( Rice, 1968 ) computation where the implementation follows the

formulation of Shih et al. (1986) . 

Three different notch lengths (N05, N10, N20) are considered, with and without inclusions. These particular geometries

were selected since cracks clearly initiate at the notch tip rather than between rigid inclusions or in the bulk material. This

allows computation and comparison of the J-Integral values computed at the predicted initiation point (i.e. the notch tip).

Generally, crack initiation in the phase field formulation is not clearly defined. Here we define initiation to occur when the

peak value of the phase field at the notch-tip has reached 0.25, corresponding to the critical value analytically obtained by

Borden et al. (2012) in the context of the standard phase field formulation (although it was derived for the small deformation

case). 

The same material properties presented previously are used in ABAQUS and a force-versus-displacement curve compar-

ison is shown in Fig. C.21 . A representative result is also provided in Fig. C.22 where the notch tip mesh is illustrated. It

is expected that the value of the J-Integral is independent of the geometry at the crack initiation point when the mate-

rial parameters are the same. Seven values are obtained for each geometry corresponding to seven different contour paths

around the crack tip. The path-independence of the J-integral is clearly demonstrated in Table C.2 . Although there is some

variation in the converged value with respect to geometry, the variation is not very large. In light of this we conclude that

the phase field formulation employed herein predicts crack growth to occur when approximately the same strain energy

release rate is achieved. Nevertheless, more investigations of this type for different geometries are likely needed in order to

draw a stronger conclusion. 
Fig. C.21. Force vs. displacement comparison with ABAQUS. The final ABAQUS marker (which is enlarged) represents the load at which we define crack 

initiation in each case. Note that “Hom.” refers to predictions with homogeneous TP material (i.e. geometry without stiff inclusions). 

Table C.2 

J-Integral values computed for 6 geometries. 

Contour Path 

1 2 3 4 5 6 7 

N05 0.478 0.478 0.478 0.477 0.477 0.477 0.477 

N10 0.503 0.502 0.502 0.501 0.501 0.501 0.501 

N20 0.518 0.517 0.517 0.517 0.516 0.516 0.516 

N05D30 0.481 0.481 0.481 0.480 0.480 0.480 0.480 

N10D30 0.507 0.506 0.506 0.506 0.506 0.505 0.505 

N20D30 0.524 0.523 0.523 0.523 0.523 0.522 0.522 

Mean 0.502 0.501 0.501 0.501 0.501 0.500 0.500 

Std. Dev. 0.019 0.019 0.019 0.019 0.019 0.019 0.019 
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Fig. C.22. ABAQUS result illustration for the N10D30 geometry and notch-tip mesh used for the J-Integral calculation. Note that symmetry along the 

horizontal plane is employed. Both the undeformed and deformed configurations are presented where the contours illustrate the maximum in-plane 

principal stress distribution. 
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