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Instability-Induced Pattern 
Transformation in Soft 
Metamaterial with Hexagonal 
Networks for Tunable Wave 
Propagation
Chao Gao1, Viacheslav Slesarenko2, Mary C. Boyce3, Stephan Rudykh4 & Yaning Li   1

Instability-induced pattern transformations of the architectured multi-phase soft metamaterial under 
bi-axial compression were explored. The soft metamaterial is composed of two phases: a soft matrix 
and a reinforcing hexagonal network embedded in the matrix. Equi-biaxial loading is found to induce 
both micro- and macro- instabilities in the networked architecture. Two types of instability patterns 
were observed, dependent upon the architecture geometry and the material combination. The critical 
strain for triggering instability and the two resulting types of patterns was derived, and a theoretical 
criterion for the transition between the two patterns was determined. Type I patterns retain the original 
periodicity of the architecture but wrinkles the network walls whereas Type II patterns transform the 
overall periodicity of the architecture while bending the network walls. Elastic wave propagation 
analysis was performed for the two distinct patterns under both stressed and stress-free conditions: 
a change in band gaps is found for both instability-induced pattern transformations, but differs for 
each type due to their dramatic difference in structure transformation (i.e. Type I wall wrinkling vs. 
Type II periodicity switching). The distinguished mechanical behavior and the rich properties of this 
category of multi-phase soft metamaterial can be used to design new smart materials with switchable 
functionalities controllable by deformation.

Under larger elastic deformation, architectured soft metamaterials can experience dramatic pattern transforma-
tion triggered by structural and material instability. Recognizing that patterned materials can exhibit tailored 
wave propagation behaviour1–3, the instability-induced reversible pattern transformation has been to provide 
deformation-dependent switchable mechanical and wave propagation properties4–6. By tuning the geometry and 
material combination of the soft metamaterials, both the critical strain and the corresponding pattern transfor-
mation can be tailored, and thus the wave propagation properties can be tuned accordingly. Therefore, through 
geometrical design and the selection of the constituent materials, these soft metamaterials can be used to design 
tunable mechano-adaptive composites. These soft architectured composites will provide multifunctional capabil-
ities to allow for tunable properties, such as thermal and wave propagation characteristics through controllable 
reconfigurable structures.

Based on different geometry and material combination, the soft metamaterials can be classified into two basic 
categories: (1) single-phase porous or cellular soft metamaterials7,8, and (2) multi-phase soft metamaterial with 
architectured reinforcement phase embedded in a soft matrix phase, such as layers or inclusions9–11. Recently, 
both the instability and wave propagation properties of the former class have been extensively explored. While, 
for the latter class, due to the complexity in material combination, only a few cases with simple reinforcements 
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such as initially straight layers12 and circular inclusions13 were studied. For example, 3D-printed layered com-
posites with hyperelastic constituents were shown to have dramatic instability-induced pattern transformation14 
when subjected to uni-axial compression and therefore produce elastic wave-stop band15.

Here, we specifically focus on the architectured multi-phase soft metamaterial, considering the case where of a 
reinforcing hexagonal network is embedded in a soft matrix. It is known that honeycomb structures constructed 
of single phase materials can generate elastic wave band gaps16,17. However, the addition of the soft matrix sig-
nificantly enriches the behaviour and tunability of the materials. For example, additional instability patterns that 
are not admissible without matrix materials can be achieved. As a result, the wave propagation properties can be 
tuned in a different range.

This paper describes the instability-induced pattern transformation and the corresponding elastic wave dis-
persion relations in hexagonal network reinforced composites under equi-biaxial compressive strains. The paper 
is organized into the following sections: in Section 2, instability-induced pattern transformation is explored via 
theoretical analysis and numerical simulations; in Section 3, elastic wave propagation analysis is performed for 
two distinct patterns; Section 4 concludes the work with summary and discussion.

Instability-induced pattern transformation
The geometry and material combination of the periodic composites is shown in Fig. 1. The 2D representative 
volume element (RVE) is framed in Fig. 1a. It can be seen that the periodic composites include two phases: phase 
0, a soft matrix occupying the majority of the volume; and phase 1, a stiffer hexagonal network (phase 1) with thin 
cell walls embedded in the soft matrix. For phase 0, the initial shear modulus is μ0 and the Poisson’s ratio is ν0. For 
phase 1, the shear modulus is μ1 and the Poisson’s ratio is ν1. The thickness of network walls is t and the size of 
hexagonal cell is determined by the distance H between the midlines of two opposite sides. λcr is the critical wave-
length of the cell wall under the overall biaxial compression.

Theoretical scaling law.  When the applied equal-biaxial compressive strain reaches a critical value, the 
material microstructure can lose stability and the initial hexagonal pattern will be transformed to a different pat-
tern. Governed by the balance between stretching energy of the matrix and bending energy of the hexagonal 
network, for the case of instability via ubiquitous wrinkling of the network walls, a scaling law for the critical 
compressive strain εcr and the non-dimensionalized wavelength λ

t
cr  can be obtained by solving a forth order ordi-

nary differential equation (ODE)14,18 as:
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Finite element simulations.  Finite element models of the RVE were developed in ABAQUS V6.13. 
Equivalent bi-axial strains were applied, and periodic boundary conditions were applied on four edges of enlarged 
RVE. Both the network and matrix material were assumed to be neo-Hookean with shear modulus μ1 and μ0, 
respectively. For all FE models, μ = MPa10 ; the densities ρ of the constituents were chosen to be the same, 

Figure 1.  (a) The 2D RVE of the soft metamaterial with reinforcing hexagonal network embedded in soft 
matrix. The network (phase 1) has material properties (μ1, v1), while the matrix (phase 0) has material 
properties (μ0, v0). The thickness of the network walls is t, and the distance between the midlines of two opposite 
sides is H. (b) critical wavelength λcr of the cell wall under overall biaxial compression.
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ρ = 103 kg/m3, and the Poisson’s ratios were assumed to be 0.4 and 0.48 for the stiffer network and softer matrix, 
respectively. The networks were composed of regular hexagonal cells with a uniform size ( μ=H m30 ), as shown 
in Fig. 1. FE simulations were performed by varying the thickness of the network t = 0.5, 1.2, and 4 μm and the 
stiffness ratio = .

μ

μ
50, 100, 10001

0
2D plane strain elements (CPE8R) were used in the FE models To simulate 

both pre- and post- instability behaviors, the eigenvalue problem was first solved by using the ABAQUS/BUCKLE 
procedure, and then a small initial geometric imperfection (with the amplitude of 1% thickness of the interfacial 
layer) was introduced and the post-buckling analysis performed using ABAQUS/STANDARD.

The theoretical and FE results of the equivalent critical strain εcr and the non-dimensional wavelength λ t/cr  are 
plotted as functions of wall thickness to cell size ratio t H/  and the shear modulus ratio μ μ/1 2 in Fig. 2a,b, respec-
tively. Due to the symmetric geometry and loading conditions of the model, the wave numbers of each segment 
of the network are the same for all cases. The numerical results are consistent with the theoretical prediction  
(Eqs (1,2)). Generally, according micro-instability and macro-instability, there are two types of instability pat-
terns: Type I, micro-instability induced local wrinkling pattern (hollow symbols in Fig. 2a,b), and Type II, 
macro-instability induced global alternating pattern (solid symbols in Fig. 2a,b). To achieve Type I pattern, each 
edge of the hexagonal cell should be able to accommodate at least one-half wavelength λcr, i.e. ≤λ H

2 3
cr , as shown 

in Fig. 2c.
According to Eq. (2), the criterion in Eq. (3) must be satisfied for Type I pattern, otherwise, Type II pattern 

will be obtained.
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The FE results of the instability pattern for different thickness to cell size ratio t H/  and the shear modulus ratio 
μ μ/1 0 are shown in Fig. 3a,b. When μ

μ
1
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 and t
H

 increase, the instability pattern will transform from Type I to Type 

II. For the very large t
H

 or μ
μ

1

0

, the influences of the matrix become negligible, and the instability modes are asymp-
totic to the classical results of hexagonal honeycombs under equivalent biaxial compression19.

An exhaustive categorization of hexagonal network was proposed based on group-theoretic bifurcation the-
ory20. The two types of patterns (shown in Fig. 3c) can also be defined according to the axes of symmetry and the 
number of cells in a smallest repeating unit of patterns. Type I pattern is the pattern of a single cell that repeats 
itself in all three axes of symmetry, thus the local pattern of one cell can represent the overall pattern. Type II 
pattern can be defined as one or several cell patterns alternating along one or multi axes of symmetry. The bottom 
row of Fig. 3c illustrates a couple of examples of Type II patterns. Image 4 has one cell pattern repeating along the 
b’ axis and two cell patterns alternating in the a’ and c’ axes; image 5 has two cell patterns alternating in all three 
axes, and pattern 6 has three cell patterns alternating in all three axes. In fact, as mentioned before, Type I pattern 
is due to micro-instability where only the cell wall wrinkles; while Type II pattern is due to macroscopic instability 
where the matrix and hexagonal network deform in a long-wave mode.

Type I patterns correspond to the critical half intrinsic wavelength equal to or less than the segment length; 
while Type II patterns correspond to the critical half intrinsic wavelength larger than the segment length (as 
shown in Fig. 3b).
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Figure 2.  Comparison between analytical predictions and numerical results for different thickness to cell size 
ratios t

H
 and shear modulus ratios µ

µ
1

0
. (a) critical strain εcr vs. µ

µ
1

0
, and (b) nondimensional critical wavelength 

λ
t
cr  vs. µ

µ
1

0
. The hollow symbols represent Type I pattern. The solid symbols represent Type II pattern.
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The evolution of Type I and Type II patterns are different under equivalent biaxial compression. As shown in 
Fig. 4, two representative cases were chosen: Type I ( = =

μ

μ
, 1000t

H
1

30
1

0
) and Type II ( = =

μ

μ
, 100t

H
2

15
1

0
). After 

the onset of instability, for Type I pattern, the wave amplitude increases, while for Type II pattern, the length 
aspect ratio of each cell increases. Interestingly, the contours of the Von Mises stress show that during the pattern 
evolution, for Type I pattern, matrix stress localized in the region close to the convex side of the wrinkled walls 
and the center of each cell has zero strain; while for the Type II pattern, matrix stress localized in the center of 
each cell. For both patterns, matrix stress is close to zero in the region close to the concave side of the wrinkled 
walls.

The stress contours of the two representative Type I and Type II patterns are shown in Fig. 5 (with overall equal 
bi-axial strain ε = 4% (Type I) and ε = 8% (Type II)). For the Type I pattern, the stress in the matrix reaches the 
maximum values close to the peaks and valleys of the wrinkled cell walls; while for the Type II pattern, the shear 
stress component reaches the maximum in the center of each cell.

Also, as shown in Fig. 5, for both types of patterns, the stress contours near the interfaces between the layers 
and the matrix shows that at those locations, the major stress components σxx and σyy are both negative, and the 
shear stress component σxy is low. Therefore, for both patterns, debonding and/or large friction are not expected. 
This indicates another advantage for this material system.

To evaluate the influences of bi-axial strain ratio on the instability-induced pattern formation, two FE models 
were chosen for simulations under various bi-axial strain ratios. The two FE models are for two different cases 
under equi-biaxial loading, as shown in Fig. 3b: Type I pattern ( = =

μ

μ
, 100t

H
1

30
1

0
), and Type II pattern 

( = =
μ

μ
, 100t

H
2

15
1

0
). For each model, simulations under seven bi-axial strain ratios were performed, i.e. 

ε ε =: 0:1, 1:4, 1:2, 1:1, 2:1, 4:1, and 1:01 2 . By defining the critical strain ε ε ε= max( , )cr cr cr1 2 , the influ-
ences of the bi-axial strain ratio on the onset of instability and the post-instability region for both cases are com-
pared in Fig. 6a,b, respectively.

Figure 3.  (a) Analytical model (black solid line) and FE results of the eigenmodes of hexagonal network 
reinforced composites as a function of thickness to cell size ratio t H/  and shear modulus ratio µ

µ
1

0
; (b) FE results of 

the instability patterns of the hexagonal network reinforced composites. (Type I pattern is local repeating patterns 
(hollow symbols), and Type II pattern is global alternating patterns (solid symbols)); (c) summary of the two 
types of wrinkling patterns from numerical simulations. The details of material and geometric property of each 
case are follows: case 1( = =µ
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, 50t
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Fig. 6a shows that for both cases, the minimum critical strain for instability occurs at ε ε =: 1:11 2 , indicating 
that the equi-biaxial loading is the easiest loading case for the instability-induced pattern formation. When the 
bi-axial strain ratio increases/decreases beyond 1, the critical strain increases monotonically.

To explore the influences of the bi-axial strain on the two cases in the post-instability region, the FE contours 
of the maximum principal strain of the two cases at the same maximum overall strain (i.e. ε ε =max( , ) 10%cr cr1 2 ) 
are shown in Fig. 6b. In the soft matrix, for both types of patterns, the most-uniform deformation was generated 
under equi-biaxial loading. For cases with strain ratio other than 1:1, higher level strain concentrations were 
observed. Interestingly, for cases with ε ε =:1 2 1:2, and 2:1, the amplitude of the wavy layers for Type I pattern is 
larger than those of other cases; and for Type II pattern, the rotation angle of each cell is larger than those of other 
cases and the average strain in the layer are highest under equi-biaxial loading.

Elastic wave dispersion relations and band gaps.  Here we examine the acoustic properties of the 
soft transformable structures, and analyse the switchable behaviour induced by the instability induced pat-
tern transformations. To study elastic wave propagation, the Bloch-Wave technique was utilized; in particular, 
Bloch-Floquet periodic boundary conditions were superimposed on the finitely deformed state of the compos-
ites4,21,22. First, the solution for finitely deformed structures in post-buckling regime was obtained; to this end, 
the initial geometric imperfections derived from the linear buckling analysis were introduced, and, then, equal 
bi-axial compressive strains were applied; so that the stress and strain states for each level of deformation can be 
obtained. Next, the Bloch-Floquet displacement conditions were imposed on the boundaries for different strain 
levels. The phononic band gaps in the undeformed state were identified by checking the eigenfrequencies for k 
vectors along the perimeter of the irreducible Brillouin zone (IBZ) of reciprocal lattice (see Fig. 7d–f).

Since the consideration is limited to the plane strain conditions, the dispersion characteristics of the longi-
tudinal and in-plane transverse waves were analysed. Although the post-buckling composite structure remains 

Figure 4.  Evolution of wrinkling patterns for Type I ( = =µ
µ

, 1000t
H

1
30

1

0
) and Type II ( = =µ

µ
, 100t

H
2

15
1

0
) 

under three stages of equivalent biaxial compression (global strain ε = 0%, 2%, 4% (Type I), and ε = 0%, 8%, 
16% (Type II)).
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periodic and the initially considered enlarged unit cell (Fig. 1a) still can be used to describe the formed patterns, 
this particular unit cell does not have the smallest area. While Bloch-Wave analysis can be performed on such 
unit cell, it usually leads to the appearance of reflected and artificial branches in the dispersion relations. To avoid 
this, a new representative unit cell is constructed; the new unit cell corresponds to the new “true” periodicity of 
the structure formed upon buckling. The constructed unit cell in the undeformed state (Fig. 7a) and after Type I 
buckling (Fig. 7b) coincide with RVE, framed in Fig. 1a; the new unit cell for Type II buckling is shown in Fig. 7c.

Fig. 8a,b show the dispersion curves for the case of =t
H

1
30

 and =
μ

μ
10001

0
 in the undeformed (a) and buckled 

states (b). For these geometrical and materials parameters, the soft metamaterial develops a local repeating pat-
tern upon achieving the critical level of deformation. Since local Type I buckling retains the periodicity, the IBZs 

Figure 5.  Normal and shear stress contours of type I ( = =µ
µ

, 1000t
H

1
30

1

0
) and II ( = =µ

µ
, 100t

H
2

15
1

0
) 

patterns.

Figure 6.  (a) The critical strain of instability for various bi-axial strain ratios, and (b) FE contours (with 
deformation amplification factor 2) of the matrix and the layers for Type I and Type II patterns, respectively.
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for the undeformed (Fig. 7d) and buckled states (Fig. 7e) coincide. As one may see from Fig. 8b, a local buckling 
within the periodic unit cell leads to the formation of complete (simultaneous shear and pressure) band gap. We 
should mention, however, that the width of the formed band gap is relatively narrow.

The instability induced formation of global alternating pattern (Type II) in the composite with =t
H

2
15

 and 
=

μ

μ
1001

0
 affects the elastic wave propagation differently. As one may notice comparing Fig. 7a,d and Fig. 7c,f, 

Type II buckling leads to the change in periodicity, and as a result, to the change of the basis vectors in the direct 

Figure 7.  Primitive unit cells (a,b,c) and their reciprocal lattices (d,e,f) of the studied structures in undeformed 
and post-buckling state. Grey area represents the irreducible Brillouin zone (IBZ) and red arrows show the path 
along its perimeter.

Figure 8.  Band gap formation in the Type I (a,b,c) and Type II (d,e,f) patterns. The filled red area represents 
complete band gaps for in-plane waves. The Y-axis represents normalized frequency = ω

π
ρ
μ

f H
2 0

.
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and reciprocal lattices, namely, vector b1 decreases its length two times, while vector b2 remains the same as the 
one in the initial configuration of the system. This leads to the change in the IBZ, which for the buckled case is 
highlighted in Fig. 7f. The formation of the global alternating pattern leads to the complete band gap, which opens 
in the range of relatively low frequencies. Remarkably, the width of this band gap significantly exceeds the width 
of the band gap that is formed due to local changes in the geometry of the unit cell (Type I). The same regularity 
was observed for cases with different geometrical and material parameters.

The applied bi-axial compression on par with accompanied buckling affect the composite state through 
geometrical changes and the formation of the internal stress state in soft matrix and stiff hexagonal network. In 
order to separate contributions of these two mechanisms, we performed Bloch-Wave analysis on the deformed 
stress-free primitive cells (Fig. 8c,f). Therefore, in these simulations only geometrical aspect of the buckling is 
taken into consideration. Comparing Fig. 8a and Fig. 8c we reveal that purely geometric rearrangement of the 
structure associated with Type I buckling does not have significant influence on the lowest branches of the dis-
persion curves due to relatively minor local alteration of the geometry. However, contribution of geometry is high 
enough to open a band gap as shown in Fig. 8c. This band gap is located at slightly higher frequencies as compared 
to the band gap observed after buckling (Fig. 8b); their widths, however, are almost identical. Therefore, for Type 
I buckling we observed that despite the significant change of the lower branches of the dispersion curves after 
buckling due to the internal stress state (compare Fig. 8b and Fig. 8c), formation of the band gap is associated 
mainly with the geometrical variation of the structure.

At the same time, opening of the band gap in the composite with Type II buckling is associated with a different 
mechanism. Comparing dispersion relation for post-buckling state (Fig. 8e) and stress-free deformed configu-
ration (Fig. 8f), we reveal that while the internal stresses very weakly affects the shape of the lowest branches of 
the dispersion relation, their existence is essential for the opening of the complete band gap. Indeed, the band gap 
in the frequency range 0.15–0.18, which is observed in the post-buckling regime (Fig. 8e), does not exist in the 
stress-free case (Fig. 8f). Thus, the existence of internal stresses is a significant and essential factor enriching the 
tunability of acoustic properties and band gap formations in deformable composite metamaterials.

Conclusions
In summary, finite element mechanical models of hexagonal network reinforced soft metamaterials were devel-
oped to systematically explore the influences of wall thickness and material combination on the instability of the 
material. Based on micro and macro instability, two types of patterns were formed: local wrinkling pattern (Type I) 
and global alternating pattern (Type II). Generally, when the wall thickness to cell size ratio t

H
 increases and the 

shear modulus ratio μ

μ
1

0

 decreases, Type I patterns can transform into Type II patterns. The criterion for pattern 

transformation is derived as Eq. (3). So that when ≤λ
H

2
3

cr , Type I pattern occurs; otherwise, Type II pattern 
occurs.

Bloch wave analysis was performed for the two representative cases of Type I and Type II patterns. It was 
found that due to instability-induced pattern transformation, acoustic/elastic properties of the soft metamaterial 
can change significantly. In particular, complete band gap can be generated due to instability-induced pattern 
transformations. We revealed that variation of the elastic/acoustic properties is associated with two mechanisms, 
contribution of which depends on the buckling type.

By tailoring the geometry and material combination of the hexagonal network reinforced soft metamaterial, 
the band gap can be also tuned. For Type I buckling, even minor local changes in the geometry (under either 
stressed or stress-free conditions) may lead to opening of low frequency band gaps. While internal stress state 
significantly affects the lowest branches of the dispersion curves. For the representative case of Type II buckling, 
we showed that a combination of geometrical changes and existence of internal stresses is required to open wide 
band gap in the low frequency range.

We note that the development of macroscopic instabilities (Type II patterns) may be followed by a localized 
deformation, such as kink band; however, microscopic instabilities (Type I patterns) can develop through-out the 
material without failure under significant deformations. The distinguished behavior of very similar microstruc-
tures illustrates the rich properties that can be achieved through tailored design for switchable functionalities 
controllable by deformation.
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