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A B S T R A C T

We investigate elastic instabilities and pattern formations in 3D-printed deformable fiber composites. We ex-
perimentally realize the instability induced patterns in the deformable 3D systems of periodically distributed
fibers embedded in soft matrix. We observe that the fiber composites exhibit significant softening upon achieving
the critical strain at which the stiff fibers cooperatively buckle into wavy patterns. For periodically distributed
fiber composites with square in-plane periodicity, we observe the transition of the instability induced patterns
from small wavelength wavy pattern to long wave mode with an increase in fiber volume fraction. Both ex-
perimental results and rigorous Bloch-Floquet numerical analysis show that the critical wavenumber and critical
strain decrease with an increase in fiber volume fraction. For composites with rectangular in-plane periodicity of
fibers, we observe that the cooperative buckling mode develops in the direction, where the fibers are close to
each other; and an increase in the periodicity aspect ratio leads to a decrease in critical wavenumber and critical
strain. In addition, we present our theoretical, numerical, and experimental results for single fiber in soft matrix
system. For the single fiber system, we observe that the critical wavelength has a linear dependence on fiber
diameter. An explicit formula is derived to estimate the dependence of critical wavelength on shear modulus
contrast, and further verified by experimental data and numerical simulations.

1. Introduction

Elastic stiff fibers embedded in a soft matrix are ubiquitous in nat-
ural and synthetic systems, e.g., microtubules in living cell [1,2], fi-
brous biological tissues [3,4], and fiber-reinforced polymer composites
[5–8]. It is well known that an isolated fiber experiences classical Euler
buckling, when subjected to axial compressive loads. However, for stiff
fibers embedded in a soft matrix, the presence of soft matrix sig-
nificantly decreases the critical wavelength and increases the critical
strain [2,9,10]. This mechanical phenomena has drawn considerable
attention, due to its importance in fiber composite designs [11–14],
functional material designs [15,16], and biological systems [3,17].

The buckling behavior of a single stiff circular wire embedded in an
elastic matrix was firstly theoretically investigated by Herrmann et al.
[18], which considered the elastic matrix as a three-dimensional con-
tinuous body and proposed two foundation model to investigate the
buckling behavior of the stiff wire: (a) exact foundation model that
considered the displacement and force continuity requirements be-
tween the elastic matrix and the stiff wire, (b) approximate foundation
model that only considered the displacement and force in radial

direction and neglected the shear deformation between the elastic
matrix and the stiff wire. For the approximate mode, Herrmann et al.
[18] derived an explicit expression to estimate the stiffness of the ma-
trix. Later, Brangwynne et al. [2] employed Herrmann's approximate
foundation model to elucidate their experimental observations on the
buckling of microtubules in living cells, and derived an expression to
approximate the value of matrix stiffness. Recently, Su et al. [19] stu-
died the buckling behavior of a slender Nitinol rod embedded in a soft
elastomeric matrix. Planar wavy patterns and non-planar coiled buck-
ling modes were experimentally observed; these experimental ob-
servations were interpreted based on consideration of the two lowest
buckling modes. Zhao et al. [10] examined the buckling of finite length
elastic fiber in a soft matrix; the authors derived a formula to connect
the overall strain and the strain state in stiff fiber. This formula showed
that the buckling of stiff fiber could be significantly tuned by the
slenderness ratio of the fiber. More recently, Chen et al. [20] examined
the buckling of stiff wire in soft matrix, and numerically showed that
the stiff wire buckled in 2D sinusoidal configuration first, then gradu-
ally transited the configuration from 2D sinusoidal into 3D helical
mode. In many studies, Winkler foundation model [21] is used to
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provide analytical linear elasticity based estimates for buckling of a
single fiber in matrix. However, the accuracy of this model in a wide
range shear modulus contrast is not examined. Here, we first experi-
mentally observe the buckling process of a stiff fiber embedded in a soft
matrix under an axial compressive load by 3D printer fabricated spe-
cimens, and show the dependence of the critical wavelength on the stiff
fiber diameter. Then, based on the Wrinker foundation model, we
mathematically derive a new estimation for the effective stiffness, and
give an explicit formula to calculate the critical wavelength of the stiff
fiber in this system. The accuracy of this formula is verified by ex-
perimental data and numerical simulations.

The pioneering work on the stability analysis of layered and fiber
composites was laid by Rosen [22], who derived an explicit expression
to predict the buckling strain of layered composite with linear elastic
material. Triantafyllidis and Maker [23] investigated microscopic and
macroscopic instabilities in periodic layered composites with hyper-
elastic phases. Geymonant et al. [24] established rigorous theoretical
foundation for microscopic instability analysis in periodic composites,
connecting the specific case of long wave limit and the macroscopic loss
of ellipticity analysis. The loss of ellipticity analysis has been used to
study macroscopic instability in fiber-reinforced hyperelastic solids
based on phenomenological models [25–28]. An alternative approach
of micromechanics based homogenization was utilized to estimate the
macroscopic instabilities in transversely isotropic hyperelastic fiber
composite [29,30]. Recently, Greco et al. [31] investigated the influ-
ence of matrix or fiber/matrix interface microcracks on the failure be-
haviors of periodic fiber-reinforced composites under biaxial loading
conditions. By making use of the Bloch-Floquet analysis superimposed
on large deformations, Slesarenko and Rudykh [13] analyzed the in-
terplay between macroscopic and microscopic instabilities in periodic
hyperelastic 3D fiber composites subjected to an axial compressive
load. Moreover, the buckling modes with wavy patterns in periodic
layered composites under compressive loads were observed in experi-
ments [32,33]. However, to the best of our knowledge, instabilities of
deformable periodic 3D fiber composite has not been experimentally
investigated. In this paper, we study the buckling behavior of periodic
3D fiber composites with square and rectangular arrangements of per-
iodic fibers; to this end we utilize a multimaterial 3D printer, and
fabricate and mechanically test the periodic composite specimens. The
experimentally obtained critical wavelengths and critical strains are
compared with numerical results by Bloch-Floquet analysis.

The paper is structured as follows: Section 2 presents the in-
troduction for the fabrication of specimens, experimental device and
setup. The experimental investigation and theoretical analysis of
buckling of a single fiber embedded in a soft matrix are given in Section
3. Section 4 is devoted to instability induced pattern formations in
periodic fiber. Section 4.1 presents the results for fiber composites with
periodic square arrangement, and Section 4.2 focuses on fiber compo-
sites with periodic rectangle arrangement. Section 5 concludes the

study with a summary and discussion.

2. Experiment method

2.1. Specimen fabrication

To experimentally observe the buckling process of fiber composite
subjected to uniaxial compression along the fibers, we fabricated the
specimens composed of stiff fibers embedded in an elastomeric soft
matrix by using the multi-material 3D printer Object Connex 260-3. The
soft matrix was printed in TangoPlus (TP) with the initial shear mod-
ulus ≈G 0.23 MPa, the stiffer fiber was printed in a digital material
(DM) with the initial shear modulus ≈G 240 MPa; the digital material is
a mixture of the two base material (TangoPlus and VeroWhite). Here,
we considered two cases: single stiff fiber embedded in a soft matrix
(Case A); periodic fiber composites with square and rectangle ar-
rangements (Case B). All the specimens were printed in the shape of
rectangular blocks to provide a clearer visualization of the buckled fiber
shapes and pattern formations through the nearly transparent soft
matrix material. Guided by the theoretical and numerical predictions of
the buckling wavelength of the stiff fiber and considering the resolution
of the multi-material 3D printer, the samples composed of a centrally
located single DM fiber embedded in TP matrix (case A) were printed in
dimensions 20× 20×40mm (length×width×height) and in stiff
fiber diameters ranging from d=0.5–1.0mm; the samples composed of
36 periodically distributed fibers embedded TP matrix (case B) were
printed in dimensions 30× 30×40mm (length×width×height)
and in stiff fiber volume fractions ranging from cf =0.01 to 0.025,
except for the sample with cf =0.025, whose height was printed in
50mm. For the composites with periodically distributed fibers, to re-
duce the influence of boundary effects on the buckling behavior of stiff
fibers, the samples were printed with a boundary TP material layer of
the thickness t =5mm.

2.2. Experimental setup

The uniaxial compression tests were carried out using Shimadzu EZ-
LX testing machine (maximum load 2 kN). Fig. 1 shows the experiment
setup of the uniaxial compression of 3D-printed samples (a), and an
illustration of the buckled configurations of the sample (b). To reduce
the influence of material viscoelasticity on the observed behavior of the
composite, the tests were performed at a low strain rate of 4×10−4

s−1. Upon achieving the critical compression level, the stiffer fibers
start developing the buckling shape; the process was captured by two
digital cameras (located in front and on the side of the tested samples,
as shown in Fig. 1(a)). An example of the single fiber buckling induced
configuration obtained from these orthogonal views is shown in
Fig. 1(b).

Fig. 1. Experimental setup (a) and typical buckled configurations (b).
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3. Buckling of a single stiff fiber embedded in a soft matrix

We start with the investigation of the buckling of a single stiff fiber
embedded in a soft matrix subjected to axial compressive load. The
sketch of this system is shown in Fig. 2. E and v refer to the Young's
elastic modulus and Poisson's ratio, respectively. Subscripts (•) f and
(•)m refer to the properties of the stiff fiber and soft matrix, respectively;
d refers to the diameter of stiff fiber. Fig. 3 illustrates the development
process of instability induced wavy patterns (a) and stress-strain curves
(b) for DM fibers with diameters =d 0.50, 0.71, and 1.00mm. Since the
DM fiber buckles almost in the planar configuration, only the view to
record the main buckling shape is shown. We observe that the stiff fiber
develops wavy patterns, and the critical wavelength and the amplitude
of the wavy pattern increase with an increase in stiff fiber diameter (see
Fig. 3(a)). Fig. 3(b) shows the corresponding stress–strain curves. Due
to the stiff fiber buckling, we observe that the stress–strain curves ex-
hibit softening near to the buckling point. This effect is more significant
for the composite with larger stiff fiber diameter (see the dotted black
curve in Fig. 3(b)). Similar stress softening phenomenon has been ob-
served in the bulging buckling mode of cylindrical shells under inflation
[34,35]. In addition, we note that the composite strength increases with
an increase in stiff fiber diameter in pre-buckling and postbuckling
regimes.

Next, to clarify the quantitative relation between the critical wa-
velength and stiff fiber diameter, we plot the critical wavelengths for all
tested specimens as a function of stiff fiber diameter in Fig. 4. Inter-
estingly, the critical wavelength has a good linear dependence on the
stiff fiber diameter, which will be explained by theoretical analysis in
the following discussions.

Here, a theoretical analysis is performed to investigate the buckling
mechanisms observed in the experiments. We note that the Winkler
foundation model has been frequently utilized to investigate buckling
of a single stiff fiber embedded in soft matrix [2,9,10,19]. However,
previous works were mostly focused on the systems with high shear
modulus contrast (the ratio of stiff fiber to soft matrix shear modulus is
larger than 105). Here, we study buckling of the 3D printed system with
shear modulus contrast of approximately 103. We employ the Winkler
foundation model, and derive an explicit expression for an accurate
approximation for the model, and we further examine the accuracy of
model to predict the buckling of single stiff fiber embedded in soft
matrix in a wide shear modulus contrast.

Considering the system as a thin and stiff beam supported by a soft
matrix, the governing equation for a stiff fiber is given by Ref. [36].

∂
∂

+ ∂
∂

+ =E I u
z

E S ε u
z

Ku 0f f f f
4

4

2

2 (1)

where If and Sf are the area moment of inertia and cross-sectional area
of the stiff fiber, respectively; ε is the applied axial strain.

=u z A kz( ) cos( ) is the buckling mode with A and =k π l2 / being the
amplitude and wavenumber, respectively; l is the wavelength and K is
the effective stiffness of soft matrix, which can be expressed as [18].

= −
− +
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ν K kr K kr kr
16 (1 )

2(3 4 ) ( ) ( )
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where K0 and K1 are the modified Bessel functions of the second kind.
Substituting u z( ) and Eq. (2) into Eq. (1) yields

Fig. 2. Sketch of an elastic stiff fiber embedded in a soft matrix subjected to
axial compressive load.

Fig. 3. Development of instability induced wavy patterns (a) and stress-strain curves (b) for a single stiff fiber embedded in a soft matrix.

Fig. 4. Dependence of critical wavelength lcr on stiff fiber diameter.
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where =k kr͠ is the normalized wavenumber. The critical strain εcr
corresponding to the onset of buckling can be obtained by minimizing
Eq. (3) with respect to k͠ ; thus, the critical normalized wavenumber k͠cr
depends on the material property of the system only. It also indicates
that the critical wavelength has a linear dependence on stiff fiber dia-
meter. This observation agrees well with our experimental results (see
Fig. 4).

Assuming the soft matrix to be incompressible (νm=0.5), Eq. (2) can
be approximated (see Appendix for details) as
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where γ =0.577 is the Euler's constant. We note that the form of Eq.
(4) is consistent with the simplified stiffness for incompressible mate-
rials obtained by Zhao et al. [10], Brangwynne et al. [2], and Su et al.
[19]. However, the coefficient under the logarithm in the denominator
is different. We note that the difference is due to the fact that we ac-
count for the second term (i.e. K k k( )͠ ͠1 ) in the denominator; this allows
us to obtain a more accurate agreement with the exact value of the
effective stiffness term for a wider range of shear modulus contrasts.
The different approaches for approximation of Eq. (2) are discussed in
Appendix.

Then, substitution of Eq. (4) into Eq. (3) yields
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By minimizing Eq. (5) with respect to k͠ , the critical wavenumber
can be expressed as
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since the right-hand side of Eq. (6) changes very slowly with k͠cr , Eq. (6)
can be approximated as

⎜ ⎟⎜ ⎟= − ⎛
⎝

⎞
⎠

+ ⎛
⎝ +

⎞
⎠

k
G
G ν

log( ) 0.265 log 0.265 log 4
1

͠ cr
f

m f (7)

Fig. 5 shows the dependence of the normalized critical wavenumber on
shear modulus contrast. We observe that the approximate expression given
by Eq. (7) agrees well with the numerical solution of Eq. (1) (compare the
dashed red line with the continuous black line in Fig. 5), and the theo-
retical prediction for critical wavenumber shows good accordance with the
experimental observations in a wide range of shear modulus contrast. We
note that an increase in Poisson's ratio of the stiff fiber material leads to a
slight decrease in the normalized critical wavenumber (compare the da-
shed blue line with the dashed red line in Fig. 5).

In addition, we perform the standard linear buckling analysis
through the finite element numerical procedure implemented in
COMSOL 5.2a; thus, we obtain numerically the dependence of nor-
malized critical wavenumber on shear modulus contrast.1 Fig. 5

presents a comparison of the critical wavenumbers obtained by nu-
merical simulations and theoretical analysis (compare the black circular
points with black continuous curve), which additionally demonstrates
that the obtained Eq. (7) provides an accurate prediction for the critical
wavelength of a stiff fiber embedded in a soft matrix within a wide
range of shear modulus contrast ( < <G G10 / 10f m

2 8).

4. Buckling of composites with periodically distributed fibers

Next, we investigate the instability induced pattern formations in
composites with fibers periodically distributed in soft matrix. In parti-
cular, we study (a) symmetric case of square arrangement of periodi-
cally distributed fibers, and (b) case of rectangular arrangements of
periodically distributed fibers. We present the experimental results for
onset of instabilities in the periodic 3D-printed fiber composites and
compare them with the numerical results. In order to numerically
identify onset of instabilities and corresponding critical wavelengths,
we employ Bloch-Floquet analysis, which is implemented by means of
finite element code COMSOL. In the numerical analysis, we consider TP
(soft matrix material) and DM (stiff fiber material) as nearly in-
compressible neo-Hookean materials ( =Λ G/ 1000, where Λ is the first
Lame constant) with shear modulus contrast =G G/ 1000f m . First, we
apply macroscopic deformation by using the periodic displacement
boundary conditions imposed on the faces of the unit cell. Once the
deformed state is obtained, Bloch-Floquet conditions are imposed on
the faces of the unit cell via + = − ⋅eu X R u X( ) ( ) iK R, where X and u
denote the position vector and displacement vector, respectively; K and
R denote the Bloch wave vector and spatial periodicity in the reference
configuration. The corresponding eigenvalue problem with the Bloch-
Floquet boundary conditions is solved numerically until a non-trivial
zero eigenvalue is detected at a certain deformation level. The corre-
sponding compressive strain and wavenumber are identified as the
critical strain εcr and critical wavenumber k ,cr respectively. For more
detailed and illustrative description of the numerical instabilities ana-
lysis readers are referred to Slesarenko and Rudykh [13]. Note that we
distinguish the microscopic and macroscopic (or long wave) in-
stabilities. The microscopic instabilities are associated with onset of
instabilities at a finite critical wavelength ( =l k2π/cr cr , or non-zero
critical wavenumber kcr). The macroscopic (or long wave) instabilities
are associated with the specific case of →kcr 0, when critical wavelength
significantly exceeds the microstructure characteristic size. In this case
the onset of macroscopic instabilities can be determined by evaluating
the effective tensor of elastic moduli and applying the loss of ellipticity
condition [24].

Fig. 5. Normalized critical wavenumber k͠cr as a function of shear modulus
contrast G G/f m.

1 In the numerical model, the soft matrix and stiff fiber are considered as linear elastic
material; the geometry of the numerical model is considered as square brick. Considering
the computational cost and accuracy, the height of the model is set as =H l10 cr (lcr is
estimated by Formula (7)); we note, however, that the choice of the height H in the
numerical model may affect the critical wavelength. The side length of the square cross
section of the model is set as =W r150 to diminish the effect of the finite size of the
sample on critical wavelength.
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4.1. Square arrangement of periodically distributed fibers

Fig. 6 illustrates the development of instability induced wavy pat-
terns (a) and the dependence of critical wavenumber on stiff fiber vo-
lume fraction (b) for periodic fiber composite with square arrangement.
The representative volume element is shown in the inset of Fig. 6. We
observe that the composites with stiff fiber volume fractions cf =0.01
and 0.015 develop wavy patterns at smaller length scales (typically
attributed to microscopic instabilities), while the composite with
cf =0.025 buckles in long wave mode (macroscopic instability). The
periodic composite with cf =0.02 can be arguably assigned to be at the
transition zone between the composites that develop microscopic and
macroscopic instabilities. Thus, we experimentally observe the transi-
tion of the instability induced patterns from small wavelength wavy
pattern to long wave mode, as the fiber volume fraction increases. For
completeness, we show the dependence of the critical wavenumber on
stiff fiber volume fraction obtained through the Bloch-Floquet numer-
ical analysis superimposed on the deformed state in Fig. 6. Here and
thereafter, the hollow and solid symbols correspond to the microscopic
and macroscopic instabilities, respectively. The circles and triangles
denote the numerical and experimental results for periodic fiber com-
posite, respectively; the dashed blue line corresponds to the theoretical
result of single fiber composite obtained by Eq. (7). We observe a

remarkable agreement of the experimental observations and numerical
simulation results. Both experimental observations and numerical si-
mulations show that the critical wavenumber decreases with an in-
crease in stiff fiber volume fraction. When the stiff fiber volume fraction
exceeds a certain threshold value ( ≈cf 0.02 for =G G/ 1000f m ), the fiber
composites start developing instabilities in the long wave mode upon
achieving the critical level of compressive deformation. The interac-
tions between stiff fibers weaken with a decrease in stiff fiber volume
fraction, therefore, we observe that the critical wavenumber of periodic
fiber composite in the dilute limit attains the value corresponding to
single fiber system (compare the circular points with dashed blue line in
Fig. 6(b)).

Fig. 7 shows the experimental stress-strain curves (a), and the de-
pendence of the critical strain (b) for periodic fiber composites with
square arrangement. As expected, the stress-strain curves (see Fig. 7
(a)), show that the fiber composites exhibit softening upon achieving
the critical strain at which the stiff fibers buckle into wavy patterns. The
critical strain is observed to decrease with an increase in stiff fiber
volume fraction as shown in Fig. 7 (b). Similar to the observation for
critical wavenumber, the critical strain for periodic fiber composites at
low stiff fiber volume fraction approaches the critical strain of single
fiber system (denoted by the horizontal dotted line in Fig. 7(b)).

Fig. 6. Development of wavy patterns in fiber composites with square arrangement (a); dependence of critical wavenumber on fiber volume fraction (b). The dotted
horizontal line in (b) corresponds to the single fiber analytical result (Eq. (7)).

Fig. 7. Experimental stress-strain curves for fiber composites with square arrangement (a), and dependence of the critical strain on fiber volume fraction (b). The
dotted horizontal line in (b) corresponds to the single fiber analytical result (Eq. (5)).
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4.2. Rectangle arrangement of periodically distributed fibers

Next, we investigate the influence of fiber arrangements on the
buckling behavior of the periodic fiber composites. In particular, we
consider fiber composite with rectangular periodic unit cell. The re-
presentative volume element, characterized by aspect ratio =η b a/ , is
shown in the inset of Fig. 8. Note that while the aspect ratio is varied,
the fiber volume fraction is kept fixed at the value cf =0.01. In our
experiments, the fiber diameter was identical for all composite speci-
mens with different aspect ratios; we also kept fixed the dimensions of
the considered specimens and the number of stiff fiber. The develop-
ment of the wavy pattern in fiber composites with rectangle arrange-
ment is shown in Fig. 8 (a). Similarly to the previously discussed case of
periodic square arrangements, the periodic composites with rectangular
arrangements of periodic fibers develop wavy patterns, and the am-
plitude of the wavy pattern significantly increases with an increase in
compressive load. However, a change in the periodicity aspect ratio
leads to certain cooperative buckling behavior of the fibers such that
the wavy patterns develop in the direction, where fibers are close to
each other (see the cases for η =4, 9 in Fig. 8 (a)). Fig. 8 (b) presents
the dependence of critical wavenumbers on aspect ratio. We find that
experimental and numerical results show good accordance, especially
in the range of high aspect ratio. We also observe that the critical wa-
venumber decreases with an increase in aspect ratio, and this effect is
more significant in the range of small aspect ratio.

Fig. 9 presents the experimental stress-strain curves (a), and the
dependence of critical strain (b) for periodic fiber composites with
rectangle arrangement. Similar to the observation for fiber composite
with square arrangement, we observe that the buckling of the stiff fiber

decreases the load capacity of fiber composite (see Fig. 9(a)). In the
stable regime, the stiffness of the composites with different periodicity
aspect ratios is nearly identical. However, the onset of buckling and the
postbuckling behavior changes significantly with a change in the peri-
odicity aspect ratio. Fig. 9 (b) shows the dependence of the critical
strain on aspect ratio. We observe that the critical strain decreases with
an increase in aspect ratio; thus, the composites with higher aspect ratio
require lower levels of compressive deformation to trigger buckling.

5. Conclusion

In this work, we have examined the elastic buckling of single stiff
fiber and periodically distributed stiff fiber embedded in a soft matrix
subjected to axial compressive loads. First, we experimentally observed
the buckling process of a single fiber embedded in soft matrix. We have
found that the critical wavelength and the amplitude of the wavy pat-
tern increase with an increase in fiber diameter, and the critical wa-
velength has a linear dependence on the stiff fiber diameter. Then,
based on the Winker foundation model, we derived an explicit ex-
pression to predict the buckling wavelength, and further verified the
derived expression in a wide range of shear modulus contrast by com-
paring to experimental data and numerical simulations.

Next, we investigated the elastic buckling of composites with peri-
odically distributed fibers. We experimentally observed the transition of
the instability induced patterns from small wavelength wavy pattern to
long wave mode, along with the increase of fiber volume fraction. For
fiber composites with periodic square arrangement, both experimental
and numerical results have showed that the critical wavenumber and
critical strain decrease with an increase in fiber volume fraction. For

Fig. 8. Development of wavy patterns in fiber composites with rectangle arrangement (a); dependence of critical wavenumber on the periodicity aspect ratio (b).

Fig. 9. Experimental stress – strain curves for fiber composites with rectangle arrangement (a), and dependence of the critical strain on the periodicity aspect ratio
(b).
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fiber composites with rectangular arrangements, we have observed that
the stiff fibers develop a cooperative buckle mode in the direction,
where the fibers are close to each other; and an increase in aspect ratio
leads to a significant decrease in critical wavenumber and critical
strain. Thus, various out-of-plane postbuckling wavy patterns can be
tailored through design of in-plane fiber arrangements. These findings
may be used in design of reconfigurable functional materials, poten-
tially extending the ideas to electro- [37,38] and magnetoactive
[39–42] composite materials, tunable acoustic metamaterials [43–45],

and other 4D-printed functional materials [46–48].
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Appendix. Approximation of the effective stiffness K of Winkler foundation model for incompressible material

In this paper, Winkler foundation model is employed to investigate the buckling behavior of a stiff fiber embedded in a soft matrix subjected to a
compressive load along the fiber. The matrix is approximated as an array of springs with effective stiffness K acting only in the radial direction. An
elastic circular stiff fiber with radius r buckles in the mode of =u z A kz( ) cos( ), where A and =k π l2 / are the amplitude and wave number, re-
spectively; l is the wavelength. The effective stiffness K can be expressed as [18].

= −
− +
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ν K k K k k
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where =k kr͠ , K0 and K1 are the modified Bessel functions of the second kind.
We note that for the buckling of an infinite length stiff fiber embedded in a soft matrix, ≪k 1͠ , Eq. (A1) can be significantly simplified. At first,
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where γ =0.577 is the Euler's constant.
Since ≪k 1͠ , we neglect the terms of the order higher than 2, then Eq. (A2) is approximated as
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(A3)

Furthermore, K k k( )͠ ͠1 has the following approximation [50] when ≪k 1͠ ,

≈K k k( ) 1͠ ͠1 (A4)

Fig. A1. Comparison of the approximated value with the exact value.
Fig. A1 shows the values of the modified Bessel function of second kind K k( )͠0 and K k( )͠1 and their estimates for the argument < <− k10 0.4͠3 . In

the considered range, the estimates (A3) and (A4) provide very accurate approximation for the exact values of Bessel functions. For instance, for
k͠ =0.1, the estimates (A3) and (A4) produce the values of 2.419 and 1, respectively, while the exact values of =K (0.1)0 2.427 and =K0.1 (0.1)1 0.985.
We note that although → ∞K k( )͠0 with →k 0͠ , the convergence → ∞K k( )͠0 is very slow, for example, =−K (10 )0

10 23.14.
Then, under the soft matrix incompressibility assumption (νm=0.5), substitution of (A3) and (A4) into (A1) yields
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Different ways to simplify the expression (A1) are reported in the literature (see, for example, Brangwynne et al. [2] and Zhao et al. [10]), where
the second term in the denominator is usually neglected. However, according to the results presented in Fig. 5 and Fig. A1, even for relatively high
shear modulus contrast, both terms in the denominator of expression (A1) are of the same order, and should not be neglected. For example, for
incompressible fiber and soft matrix ( =ν νf m=0.5), and shear modulus contrast =G G/ 10f m

6, the normalized critical wavenumber k͠cr is 0.033, and
≈K k K k k2 ( ) 7 ( )͠ ͠ ͠cr cr cr0 1 . Figure A2 shows a comparison of the exact value of effective stiffness K with estimate (A5) as well as the approximations

reported in Refs. [2] and [10] plotted as functions of k͠ . We observe that the expression (A5) derived in this work shows an excellent accuracy in
approximations of the original expression (A1). Moreover, we note that the inaccuracy of the approximations of the original expression decrease with
a decrease in the normalized wavenumber. Since the normalized wavenumber decreases with an increase in shear modulus contrast (see Fig. 5), it
means that the approximate expressions ((A5), [2], [10]) provide more accurate results in the range of higher shear modulus contrast.

Fig. A2. Comparison of effective stiffness K obtained by the approximate expressions reported in this paper, Brangwynne et al. [2] and Zhao et al. [10] with the
original formula (A1).
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