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Abstract—In this paper, a problem of equilibrium of two elastic bodies pasted together along a curve
is considered. It is assumed that there is a through crack on a part of the curve. Nonlinear boundary
conditions providing mutual non-penetration between the crack faces are set. The main objective
of the paper is to construct and test a numerical algorithm for solving the equilibrium problem. The
algorithm is based on two approaches: a domain decomposition method and Uzawa method for
solving variational inequalities. A numerical experiment illustrates the efficiency of the algorithm.
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INTRODUCTION

Consider a two-layer structure of two elastic bodies pasted together along a line. In a part of the
pasting line there is a through crack on which nonlinear boundary conditions of unilateral constraint
are specified to exclude penetration of the crack faces into one another. The behavior of both layers of
this structure is simulated as a plane problem in elasticity theory. The layers move identically along the
pasting line and at the same crack faces. The structure is in equilibrium under the action of some forces
applied to the external boundaries of the bodies.

The problem under consideration belongs to a class of crack theory problems with possible contact
between the faces. Such problems are investigated, for instance, in [1–9]. Papers [10–12] are devoted
to problems of equilibrium of multilayer structures with cracks. Specifically, in paper [12] correctness of
the solution to the problem being considered in the present paper is proved and qualitative analysis of
the solution is performed. Unfortunately, no results have been obtained so far for numerically solving the
problems of equilibrium of multilayer structures with cracks and non-penetration. Some crack theory
problems with non-penetration are solved numerically in [13–18].

The main purpose of the present paper is to create an efficient algorithm for solving a problem of
equilibrium of the above two-layer structure with a through crack and non-penetration of the crack
faces. Two approaches are used in constructing the algorithm: a domain decomposition method widely
used for numerically solving various problems of fluid dynamics (see, for instance, [19–24]) and Uzawa
method for solving problems with unilateral constraints. First, the initial domain in which the solution is
sought for is divided into two subdomains. Then Lagrange multipliers are introduced to guarantee non-
penetration of the crack faces and that the two layers move identically along the pasting line. Finally,
examples of numerical calculations with finite element method are presented.
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1. PROBLEM STATEMENT

Let Ω ⊂ R
2 be a bounded domain with a Lipschitz boundary ∂Ω such that ∂Ω = ΓN ∪ ΓD, ΓN ∩

ΓD = ∅ and meas ΓD > 0. Also, let γc ⊂ Ω be a smooth curve without self-crossings, γc ∩ ΓD = ∅.
Assume that the curve Σ divides the domain Ω into two subdomains: Ω− and Ω+ with Lipschitz
boundaries ∂Ω− and ∂Ω+, respectively, and that the following conditions are satisfied:

γc ⊂ Σ, meas (Σ \ γc) > 0, meas (∂Ω± ∩ ΓD) > 0.

Let us take a unit normal vector ν to Σ so that ν is the outward unit normal vector to Ω−. Hence, the
vector (−ν) is a unit normal vector to Ω+ on Σ. Let τ denote the unit tangent vector on Σ. Also, let γ±

c
denote the edge of the curve γ belonging to the subdomain boundary Ω±.

Let us denote ΩΣ = Ω \ Σ and Ωc = Ω \ γc, and consider the following boundary value problem: For
given vectors f, g ∈ L2(ΓN )2, find vector-functions u=(u1, u2) and v = (v1, v2) such that

−σij,j(u) = 0, −σij,j(v) = 0 in ΩΣ, i = 1, 2, (1)

ui = 0, vi = 0 on ΓD, (2)
σijnj = fi, pijnj = gi on ΓN , i = 1, 2, (3)

ui = vi,
[
σijνj + pijνj

]
= 0 on Σ \ γc, i = 1, 2, (4)

[
uj

]
νj ≥ 0 on γc, (5)

ui = vi on γ±
c , i = 1, 2, (6)

[
σν(u) + pν(v)

]
= 0, (σν(u) + pν(v))

[
uj

]
νj = 0 on γc, (7)

στ (u) + pτ (v) = 0, σν(u) + pν(v) ≤ 0 on γ±
c . (8)

Here u = (u1, u2), v = (v1, v2) are displacements of the two elastic bodies (layers); σ(u) = {σij(u)}
and p(u) = {pij(u)} are the stress tensors of the elastic layers; [w] = w|γ+

c
− w|γ−

c
is the jump of a

function w on γc; n is the outward normal to ∂Ω; σν(u) = σij(u)νiνj ; στ (u) = σij(u)νiτj . The subscripts
after comma denote the operations of differentiation with respect to the corresponding coordinates.
Summation is implied over repeated indices. The quantities pν(v) and pτ (v) are defined in the same
way as σν(u) and στ (u).

Let A = {aijkl}, B = {bijkl} (i, j, k, l = 1, 2) be given tensors of elasticity coefficients satisfying the
standard properties of symmetry and positive definiteness. Assume that linear Hooke’s law is valid in the
elastic layers:

σij(u) = aijklεkl(u), pij(v) = bijklεkl(v), i, j = 1, 2,

where ε(w) = {εij(w)} is the linear strain tensor,

εij(w) =
1
2
(wi,j + wj,i), i, j = 1, 2.

The problem (1)–(8) describes a state of equilibrium of two elastic bodies pasted together along the
curve Σ and rigidly fixed on ΓD. On γc (part of the curve Σ) there is a through crack with non-penetration
conditions on its faces.
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2. VARIATIONAL FORMULATION OF THE PROBLEM

Let us formulate the problem (1)–(8) in variational form. For this, we define an energy functional

Π(u, v) =
1
2

∫

Ωc

(
σij(u)εij(u) + pij(v)εij(v)

)
dx −

∫

ΓN

(
fiui + givi

)
ds

and introduce a set of admissible displacements

K =
{

(u, v) ∈ H | [uj ] νj ≥ 0 almost everywhere on γc, u = v on γ±
c , u = v on Σ \ γc

}
,

where

H = H1
ΓD

(Ω)2 × H1
ΓD

(Ω)2,

H1
ΓD

(Ω)2 =
{

w ∈ H1(Ωc)2 | w1 = w2 = 0 almost everywhere on ΓD

}
.

The boundary value problem (1)–(8) is formulated as a minimization problem: Find a pair of functions
(u, v) ∈ K minimizing the energy functional Π on the set K:

Π(u, v) = inf
ū,v̄∈K

Π(ū, v̄). (9)

It is well known (see, for instance, [12]) that the problem (9) has a unique solution satisfying the
variational inequality

∫

Ωc

(
σij(u)εij(ū − u) + pij(v)εij(v̄ − v)

)
dx ≥

∫

ΓN

(
fi(ūi − ui) + gi(v̄i − vi)

)
ds ∀ (ū, v̄) ∈ K.

It is also shown in [12] that the differential formulation (1)–(8) and the variational one (9) of the
equilibrium problem are equivalent.

3. DOMAIN DECOMPOSITION

Let us define functional spaces:

U± =
{
u± ∈ H1(Ω±)2 | u±

1 = u±
2 = 0 almost everywhere on ∂Ω± ∩ ΓD

}
,

V ± =
{
v± ∈ H1(Ω±)2 | v±1 = v±2 = 0 almost everywhere on ∂Ω± ∩ ΓD

}

and a set Kgc ⊂ U− × U+ × V − × V +:

Kgc =
{

(u−, u+, v−, v+) ∈ U− × U+ × V − × V + | (u+ − u−)ν ≥ 0 almost everywhere on γc,

u− − u+ = 0 on Σ \ γc, u− − v− = 0, u+ − v+ = 0 almost everywhere on Σ
}
.

Since we assume that meas (∂Ω± ∩ ΓD) > 0, by virtue of the Korn inequality a norm in the spaces
U±, V ± can be defined by the formula
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∥
∥w±∥

∥2 =
∫

Ω±

σij(w±)εij(w±) dx,

where w± belongs to the spaces U± or V ±.

On U± and V ±, we define the corresponding energy functionals Π±(u±) and Π±(v±) and consider
the following minimization problem: Find functions (u−, u+, v−, v+) ∈ Kgc such that

Π−
(
u−)

+Π+

(
u+

)
+Π−

(
v−

)
+Π+

(
v+

)

= inf
(ū−,ū+,v̄−,v̄+)∈Kgc

(
Π−

(
u−)

+Π+

(
u+

)
+Π−

(
v−

)
+Π+

(
v+

))
. (10)

The following theorem holds (see, for instance, [13, 14]):

Theorem 1. The problem (10) has a unique solution (u−, u+, v−, v+) ∈ Kgc. In addition,

u± = u |Ω± , v± = v |Ω± ,

where (u, v) is the solution to the problem (9).

4. REDUCING THE PROBLEM TO FINDING A SADDLE POINT

For an arbitrary number p > 0, we define the following sets:

U±
p =

{
u± ∈ U± | ‖u±‖U± ≤ p

}
,

V ±
p =

{
v± ∈ V ± | ‖v±‖V ± ≤ p

}
,

Λc
p =

{
λc ∈ L2(γc) | 0 ≤ λc ≤ p almost everywhere on γc

}
,

Λg
p =

{
λg ∈ L2(Σ \ γc)

2 | −p ≤ λg
1, λg

2 ≤ p almost everywhere on Σ \ γc

}
,

Λ−
p =

{
λ− ∈ L2(Σ)2 | −p ≤ λ−

1 , λ−
2 ≤ p almost everywhere on Σ

}
,

Λ+
p =

{
λ+ ∈ L2(Σ)2 | −p ≤ λ+

1 , λ+
2 ≤ p almost everywhere on Σ

}
.

On the set U−
p × U+

p × V −
p × V +

p × Λc
p × Λg

p × Λ−
p × Λ+

p , we define a Lagrange function

L
(
u−, u+, v−, v+, λc, λg, λ−, λ+

)

= Π−
(
u−)

+Π+

(
u+

)
+Π−

(
v−

)
+Π+

(
v+

)
+

∫

γc

λc
(
u−

i − u+
i

)
νi ds

+
∫

Σ\γc

λg
i

(
u−

i − u+
i

)
ds +

∫

Σ

λ−
i

(
u−

i − v−i
)
ds +

∫

Σ

λ+
i

(
u+

i − v+
i

)
ds,

associated with a family of problems of finding a saddle point of the Lagrangian L: Find functions(
u−

p , u+
p , v−p , v+

p , μc
p, μ

g
p, μ−

p , μ+
p

)
∈ U−

p × U+
p × V −

p × V +
p × Λc

p × Λg
p × Λ−

p × Λ+
p such that

NUMERICAL ANALYSIS AND APPLICATIONS Vol. 10 No. 1 2017



NUMERICAL SIMULATION OF EQUILIBRIUM 67

L
(
u−

p , u+
p , v−p , v+

p , μ̄ c, μ̄ g, μ̄ −, μ̄ +
)
≤ L

(
u−

p , u+
p , v−p , v+

p , μc
p, μ

g
p, μ

−
p , μ+

p

)

≤ L
(
ū−, ū +, v̄ −, v̄ +, μc

p, μ
g
p, μ

−
p , μ+

p

)
(11)

for all
(
ū−, ū +, v̄ −, v̄ +, μ̄ c, μ̄ g, μ̄−, μ̄ +

)
∈ U−

p × U+
p × V −

p × V +
p × Λc

p × Λg
p × Λ−

p × Λ+
p .

Note that the Lagrange multiplier λc guarantees non-penetration on the crack γc. The multipliers λ±

guarantee that the two bodies are pasted together along the curve Σ, and λg guarantees that the two
subdomains, Ω− and Ω+, into which the domain Ω is divided are pasted together.

Since the sets U±
p , V ±

p , Λc
p, Λg

p, and Λ±
p are convex closed ones that are bounded in the corresponding

Banach spaces, the Lagrangian L is convex and lower semi-continuous with respect to (u−, u+, v−, v+)
and concave and upper semi-continuous with respect to (λc, λg, λ−, λ+), the problem (11) has a solution
for all p > 0. The following theorems hold:

Theorem 2. There exists a constant c such that for all p > c the saddle point
(
u−

p , u+
p , v−p , v+

p , μc
p,

μg
p, μν

p , μτ
p

)
satisfies the following system of variational equalities and inequalities:

∫

Ω−

σij(u−
p )εij(ū −) dx +

∫

γc

μc
pū

−
i νi ds +

∫

Σ\γc

μg
piū

−
i ds +

∫

Σ

μ−
piū

−
i ds =

∫

ΓN∩ ∂Ω−

fiū
−
i ds ∀ ū− ∈ U−,

∫

Ω+

σij(u+
p )εij(ū +) dx −

∫

γc

μc
pū

+
i νi ds −

∫

Σ\γc

μg
piū

+
i ds +

∫

Σ

μ+
piū

+
i ds =

∫

ΓN∩ ∂Ω+

fiū
+
i ds ∀ ū + ∈ U+,

∫

Ω−

pij(v−p )εij(v̄ −) dx −
∫

Σ

μ−
piv̄

− ds =
∫

ΓN∩ ∂Ω−

giv̄
−
i ds ∀ v̄ − ∈ V −,

∫

Ω+

pij(v+
p )εij(v̄ +) dx −

∫

Σ

μ+
piv̄

+ ds =
∫

ΓN∩ ∂Ω+

giv̄
+
i ds ∀ v̄ + ∈ V +,

∫

γc

λc(u−
pi − u+

pi)νi ds ≤
∫

γc

μc
p(u

−
pi − u+

pi)νi ds ∀λc ∈ Λc
p ,

∫

Σ\γc

λg
i (u

−
pi − u+

pi) ds ≤
∫

Σ\γc

μg
pi(u

−
pi − u+

pi) ds ∀λg ∈ Λ−
p ,

∫

Σ

λ−
i (u−

pi − v−pi) ds ≤
∫

Σ

μ−
pi(u

−
pi − v−pi) ds ∀λ− ∈ Λ−

p ,

∫

Σ

λ+
i (u+

pi − v+
pi) ds ≤

∫

Σ

μ+
pi(u

+
pi − v+

pi) ds ∀λ+ ∈ Λ+
p .

Theorem 3. As p → ∞, we have convergence

(
u−

p , u+
p , v−p , v+

p

)
→

(
u−, u+, v−, v+

)
that is strong in U− × U+ × V − × V +.
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Theorems 2 and 3 are proved similarly to those in [13, 14, 24]. In these papers, a domain decomposi-
tion method for various models of elastic bodies with cracks with possible contact between the faces is
proposed.

The following estimate follows from [13, 14]:

0 ≤
∫

γc

h+

((
u−

pi − u+
pi

)
νi

)
ds +

∫

Σ\γc

(
h+

(
u−

pi − u+
pi

)
+ h−

(
u−

pi − u+
pi

))
ds

+
∫

Σ

(
h+

(
u−

pi − v−pi) + h−
(
u−

pi − v−pi

))
ds +

∫

Σ

(
h+

(
u+

pi − v+
pi

)
+ h−

(
u+

pi − v+
pi

))
ds ≤ K

p
, (12)

where K is a constant depending on the functions f and g; h+ and h− have the form

h+(w)(x) =

⎧
⎨

⎩
w(x) if v(x) ≥ 0,

0 if w(x) < 0,
h−(w)(x) = h+(w)(x) − w(x).

Note that if, for instance, h+

(
u−

pi − u+
pi

)
> 0 at some point x ∈ Σ \ γc, the subdomains Ω− and Ω+

“diverge” at this point, and the condition h−
(
u+

pi − v+
pi

)
> 0 indicates that the subdomains Ω− and Ω+

overlap. Thus, the estimate (12) makes it possible to assess the accuracy of approximation of the solution
to the problem (10) by the solutions to the problems of finding saddle points (11).

5. ITERATIVE ALGORITHM FOR SOLVING THE PROBLEM

Let p > c, where c is the constant from Theorem 2. Let PΛc
p

and PΛ±
p

denote the operators of projection

onto the sets Λc
p, Λg

p, and Λ±
p , respectively, which have the following simple form in the spaces L2(γc),

L2(Σ \ γc)2, and L2(Σ)2:

PΛc
p
w(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if w(x) ≤ 0,

w(x) if 0 < w(x) < p ,

p if w(x) ≥ p ,

PΛg
p
(w1, w2) = PΛ±

p
(w1, w2) =

(
P (w1), P (w2)

)
,

where

P (wi)(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−p if wi(x) ≤ −p ,

wi(x) if − p < wi(x) < p ,

p if wi(x) ≥ p ,

i = 1, 2.

To solve the problem (11), which approximates (1)–(8), we propose the following Uzawa algorithm:

1. Iteration k = 0. Specify arbitrarily μc,0 ∈ Λc
p, μg,0 ∈ Λg

p , μ−,0 ∈ Λ−
p , and μ+,0 ∈ Λ+

p .
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2. For every k ≥ 0, find (u−,k, u+,k, v−,k, v+,k) as solutions to the following linear problems:
∫

Ω−

σij

(
u−,k

)
εij

(
ū−)

dx +
∫

γc

μc,kū−
i νi ds +

∫

Σ\γc

μg,k
pi ū−

i ds +
∫

Σ

μ−,k
i ū−

i ds

=
∫

ΓN∩ ∂Ω−

fiū
−
i ds ∀ ū− ∈ U−,

∫

Ω+

σij

(
u+,k

)
εij

(
ū +

)
dx −

∫

γc

μc,kū +
i νi ds −

∫

Σ\γc

μg,k
pi ū +

i ds +
∫

Σ

μ+,k
i ū +

i ds

=
∫

ΓN∩ ∂Ω+

fiū
+
i ds ∀ ū + ∈ U+,

∫

Ω−

pij

(
v−,k

)
εij

(
v̄ −)

dx −
∫

Σ

μ−,k
i v̄ −

i ds =
∫

ΓN∩ ∂Ω−

giv̄
−
i ds ∀ v̄ − ∈ V −,

∫

Ω+

pij

(
v+,k

)
εij

(
v̄ +

)
dx −

∫

Σ

μ+,k
i v̄ +

i ds =
∫

ΓN∩ ∂Ω+

giv̄
+
i ds ∀ v̄ + ∈ V +.

3. Define μc,k+1, μ−,k+1, and μ+,k+1 by the formulas

μc,k+1 = PΛc
p

(
μc,k + θ

(
u−,k

i − u+,k
i

)
νi

)
,

μg,k+1 = PΛg
p

(
μg,k + θ

(
u−,k − u+,k

))
,

μ−,k+1 = PΛ−
p

(
μ−,k + θ

(
u−,k − v−,k

))
,

μ+,k+1 = PΛ+
p

(
μ+,k + θ

(
u+,k − v+,k

))
.

4. Stop, otherwise k = k + 1, and go to step 2.

The convergence of the sequence
(
u−,k, u+,k, v−,k, v+,k

)
to the solution

(
u−

p , u+
p , v−p , v+

p

)
of the

regularized problem (11) as k → ∞ follows from general theorems of convergence of Uzawa-type
algorithms (see, for instance, [25, 26]). Therefore, the following theorem is valid.

Theorem 4. There exists a number θ∗ > 0 such that for all θ ∈ (0, θ∗) the sequence
(
u−,k, u+,k, v−,k,

v+,k
)

strongly converges to
(
u−

p , u+
p , v−p , v+

p

)
in U− × U+ × V − × V + as k → ∞.

Remark. The number θ∗ depends on the norms of trace operators acting from H1
ΓD

(Ω±) to L2(Σ).

6. EXAMPLES OF NUMERICAL CALCULATIONS

Let Ω = (−1, 1) × (−1, 1) be a square domain divided into two subdomains as follows:

Ω− = (−1, 1) × (−1, 0), Ω+ = (−1, 1) × (0, 1)

with a common boundary
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Σ = (−1, 1) × {0}.

Assume that γc = (−1/2, 1/2) × {0} is a crack lying on Σ. Also assume that on

ΓD =
(
{−1} ∪ {1}

)
× (−1, 1)

both bodies are fixed. Let Γ+
N = (−1, 1) × {1} and Γ−

N = (−1, 1) × {−1} denote the upper and lower
boundaries of the square Ω, respectively.

Let both bodies be isotropic and homogeneous, that is, the following relations are valid:

σ11(u) = (2μ1 + λ1)ε11(u) + λ1ε22(u), p11(v) = (2μ2 + λ2)ε11(v) + λ2ε22(v),
σ12(u) = σ21(u) = 2μ1ε12(u), p12(v) = p21(v) = 2μ2ε12(v),
σ22(u) = λ1ε11(u) + (2μ1 + λ1)ε22(u), p22(v) = λ2ε11(v) + (2μ2 + λ2)ε22(v),

where

μi =
Ei

2(1 + νi)
, λi =

2νiμi

1 − 2νi
, i = 1, 2.

We take the following material parameter values:

ν1 = 0.28, E1 = 200ΓGPa,

ν2 = 0.32, E2 = 112ΓGPa.

It is assumed that in all the numerical experiments p = 107. Also, as a termination criterion of the
algorithm, we take

max
(
‖u−,k − u−,k−1‖U−

‖u−,k‖2
U−

,
‖u+,k − u+,k−1‖U+

‖u+,k‖2
U+

,
‖v−,k − v−,k−1‖V −

‖v−,k‖2
V −

,
‖v+,k − v+,k−1‖V +

‖v+,k‖2
V +

)
< 10−6.

The spaces U± and V ± are approximated by finite element spaces consisting of piecewise linear
functions, P1-Lagrange elements (see [27, 28]).

Example 1. Partial crack closure. Assume that external loads f = 10−3μ1x on Γ−
N and f = −10−3μ1x

on Γ+
N are applied to one body (material parameters with index 1), whereas the other body is without load,

that is, g = 0 on Γ−
N ∪ Γ+

N .
Let P denote the number of triangle vertices lying on Σ, and let M be the number of triangle vertices

on the external boundary ∂Ω. Let θ = 65. The table presents the results of executing the algorithm given
in Section 5 for various triangulations of the subdomains Ω− and Ω+, h±

min and h±
max denote the minimal

Calculation results

P M h−
min h−

max h+
min h+

max Nod− Triang− Nod+ Triang+ iter

12 32 0.172 0.358 0.202 0.358 68 106 67 104 843

24 48 0.081 0.260 0.085 0.239 163 276 164 268 1164

48 80 0.041 0.155 0.041 0.151 498 906 498 906 1416

96 144 0.018 0.084 0.021 0.086 1733 3296 1716 3262 1909

200 256 0.0091 0.045 0.0098 0.047 6056 11782 6133 11936 2402
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Fig. 1. Partial crack closure.

Fig. 2. The number of iterations versus the parameter θ.

and maximal sizes of triangulation cells, Nod±, the number of triangle vertices, Triang±, the number
of triangles in the domains Ω±, and iter, the number of iterations to terminate the algorithm.

Figure 1 shows the deformed bodies with an increasing coefficient of 500 in both axes and distribu-
tions of von Mises stresses (left: body with load, right: body without load).

Figure 2 presents the number of iterations versus the relaxation parameter θ for two partitions of the
domain Ω: P/M = 12/32 (curve Mesh 1) and P/M = 48/80 (curve Mesh 2). The curves show that as θ
increases, the number of iterations decreases. For Mesh 1, the algorithm starts to diverge at θ = 78, and
for Mesh 2, it diverges already at θ = 75. Note that at θ < 10 the algorithm converges, but the number
of iterations increases considerably.

Thus, comparing the curves, we can give the following recommendations for choosing an optimal
value of the relaxation parameter θ: First, the algorithm should be tested on a coarse mesh for which the
running time is small, and then the thus-obtained values of the parameter θ should be used on a fine
mesh.

It was mentioned in the introduction that in the case of linear boundary conditions on crack faces
there exist solutions at which the crack faces penetrate into each other. Figure 3 shows a deformed body
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Fig. 3. Linear problem.

Fig. 4. Full crack opening.

(left: a domain after deformation and the distributions of von Mises stresses, right: the jump along the
pasting line of the bodies Σ) with the same load but without the condition of non-penetration between
the crack faces. The domain triangulation corresponds to P = 96 and M = 144, and the number of
iterations iter = 1931.
Example 2. Full crack opening. Assume that the following forces are applied to Γ±

N : for the first body,
f = −10−3μ1 on Γ−

N and f = 10−3μ1 on Γ+
N ; the other body is without load, that is, g = 0 on Γ−

N ∪ Γ+
N .

The configurations of the bodies after deformations (with an increasing coefficient of 100 in both axes)
and the distributions of von Mises stresses are shown in Fig. 4 (left: first body, right: second body). In
this example P = 96, M = 144, and the number of iterations iter = 2113.
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